Math Problem Statement
2 Eine Kettenwurz
ist rekursiv definiert als der Grenzwert der Folge x1=√2, xn+1=√2+xn. Zeigen Sie, dass dies Grenzwert tatsachlich existiert und berechnen Sie ihn
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Sequences and Series
Limits
Recursive Sequences
Monotonicity and Boundedness
Formulas
xn+1 = √(2 + xn)
L = √(2 + L)
L^2 - L - 2 = 0
Theorems
Monotone Convergence Theorem
Properties of Convergent Sequences
Suitable Grade Level
Undergraduate Mathematics / Advanced High School
Related Recommendation
Proof of Convergence of Sequence xn = √2xn with Limit 2
Proving the Convergence of a Recursive Sequence to sqrt(2)
Convergence of Recursive Sequence Xn = sqrt(2 + Xn-1)
Prove Convergence and Find Limit of Sequence $x_n = \sqrt{2x_{n-1}}$
Finding the Limit of a Recursive Sequence: x_(n+1) = sqrt(2 + x_n)