Math Problem Statement

Let g(x)=x(x^2-4). Find equations for the following. g(x+4)=

Solution

Let's find the expression for g(x+4)g(x+4) where g(x)=x(x24)g(x) = x(x^2 - 4).

Step 1: Substitute x+4x+4 into g(x)g(x)

We replace every xx in g(x)g(x) with x+4x+4: g(x+4)=(x+4)((x+4)24)g(x+4) = (x+4)((x+4)^2 - 4)

Step 2: Simplify the expression

First, expand (x+4)2(x+4)^2: (x+4)2=x2+8x+16(x+4)^2 = x^2 + 8x + 16 Now subtract 4: (x+4)24=(x2+8x+16)4=x2+8x+12(x+4)^2 - 4 = (x^2 + 8x + 16) - 4 = x^2 + 8x + 12

Step 3: Multiply the terms

Now multiply (x+4)(x+4) by (x2+8x+12)(x^2 + 8x + 12): g(x+4)=(x+4)(x2+8x+12)g(x+4) = (x+4)(x^2 + 8x + 12)

Distribute (x+4)(x+4) across the terms inside the parentheses: g(x+4)=(x+4)(x2)+(x+4)(8x)+(x+4)(12)g(x+4) = (x+4)(x^2) + (x+4)(8x) + (x+4)(12) g(x+4)=x3+8x2+12x+4x2+32x+48g(x+4) = x^3 + 8x^2 + 12x + 4x^2 + 32x + 48

Step 4: Combine like terms

g(x+4)=x3+(8x2+4x2)+(12x+32x)+48g(x+4) = x^3 + (8x^2 + 4x^2) + (12x + 32x) + 48 g(x+4)=x3+12x2+44x+48g(x+4) = x^3 + 12x^2 + 44x + 48

Thus, the equation for g(x+4)g(x+4) is: g(x+4)=x3+12x2+44x+48g(x+4) = x^3 + 12x^2 + 44x + 48

Would you like more details or have any questions?

Here are 5 related questions to deepen your understanding:

  1. What is the derivative of g(x)=x(x24)g(x) = x(x^2 - 4)?
  2. How would the graph of g(x+4)g(x+4) differ from g(x)g(x)?
  3. What are the roots of the equation g(x+4)=0g(x+4) = 0?
  4. How would you find g(x+4)g'(x+4), the derivative of g(x+4)g(x+4)?
  5. What is the value of g(2)g(2) for both g(x)g(x) and g(x+4)g(x+4)?

Tip: Always distribute and combine like terms carefully to avoid calculation mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Functions
Function Transformation

Formulas

g(x) = x(x^2 - 4)
Function Substitution g(x+a)

Theorems

-

Suitable Grade Level

Grades 9-12