Math Problem Statement

solve g\left(x-57\right)=g\left(2x+3\right) when g\left(x\right)=4x^2-24x+11

Solution

To solve the equation g(x57)=g(2x+3)g(x - 57) = g(2x + 3) given that g(x)=4x224x+11g(x) = 4x^2 - 24x + 11, we’ll follow these steps:

  1. Substitute g(x57)g(x - 57): g(x57)=4(x57)224(x57)+11g(x - 57) = 4(x - 57)^2 - 24(x - 57) + 11

  2. Expand g(x57)g(x - 57):

    • Calculate (x57)2(x - 57)^2: (x57)2=x2114x+3249(x - 57)^2 = x^2 - 114x + 3249
    • Substitute into g(x57)g(x - 57): g(x57)=4(x2114x+3249)24(x57)+11g(x - 57) = 4(x^2 - 114x + 3249) - 24(x - 57) + 11
    • Expanding: [ = 4x^2 - 456x + 12996 - 24x + 1368 + 11 = 12996

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Function Substitution

Formulas

g(x) = 4x^2 - 24x + 11
(a - b)^2 = a^2 - 2ab + b^2

Theorems

Equality of Functions

Suitable Grade Level

Grades 9-11