Math Problem Statement
The table below gives selected values for a differentiable and increasing function f and its derivative. if g(x) = f^-1(x). what is the value of g'(2) =
x = 0, 1, 2
f(x) = 49, 2, -1
f'(x) = 0, -8, -80
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Inverse Functions
Derivative of Inverse Functions
Differentiation
Formulas
g'(x) = 1 / f'(g(x))
Theorems
Inverse Function Theorem
Suitable Grade Level
Grades 11-12
Related Recommendation
Find g(2) Given the Inverse Function f(x)
Tangent Line Equation for Inverse Function g(x) at x = 2
How to Calculate the Derivative g'(1) Using Derivative Rules
Find the Derivative of the Inverse Function: g'(-8) for f(x) = -x^3 - 6x^2 - 12x + 8
Finding g(3) and g(-2) from the Graph of g'(x) Using Integral Calculus