Math Problem Statement

Find the value of cot (tan-1 α + cot-1 α)

Solution

To find the value of cot(tan1α+cot1α)\cot (\tan^{-1} \alpha + \cot^{-1} \alpha), we start by defining some variables for clarity.

Let: θ=tan1α\theta = \tan^{-1} \alpha and ϕ=cot1α\phi = \cot^{-1} \alpha

Thus: α=tanθ\alpha = \tan \theta and α=cotϕ\alpha = \cot \phi

Since cotϕ=1tanϕ\cot \phi = \frac{1}{\tan \phi}, we have: α=1tanϕ    tanϕ=1α\alpha = \frac{1}{\tan \phi} \implies \tan \phi = \frac{1}{\alpha}

Next, we need to find θ+ϕ\theta + \phi. To do this, we use the fact that tanθ=α\tan \theta = \alpha and tanϕ=1α\tan \phi = \frac{1}{\alpha}. Using the angle addition formula for tangent, we get: tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}

Substituting tanθ=α\tan \theta = \alpha and tanϕ=1α\tan \phi = \frac{1}{\alpha}: tan(θ+ϕ)=α+1α1α1α=α+1α11\tan(\theta + \phi) = \frac{\alpha + \frac{1}{\alpha}}{1 - \alpha \cdot \frac{1}{\alpha}} = \frac{\alpha + \frac{1}{\alpha}}{1 - 1}

Since the denominator is zero, tan(θ+ϕ)\tan(\theta + \phi) is undefined, which implies that θ+ϕ=π2\theta + \phi = \frac{\pi}{2} because tanπ2\tan \frac{\pi}{2} is undefined.

Now, we want to find cot(θ+ϕ)\cot (\theta + \phi): cot(θ+ϕ)=cot(π2)\cot (\theta + \phi) = \cot \left( \frac{\pi}{2} \right)

Since cotπ2=0\cot \frac{\pi}{2} = 0: cot(tan1α+cot1α)=0\cot (\tan^{-1} \alpha + \cot^{-1} \alpha) = 0

Thus, the value is: 0\boxed{0}

Would you like details on any part of this solution, or do you have any other questions? Here are some related questions you might find interesting:

  1. Find the value of sin(tan1x+cot1x)\sin (\tan^{-1} x + \cot^{-1} x).
  2. Simplify tan(sin1x+cos1x)\tan (\sin^{-1} x + \cos^{-1} x).
  3. Solve for α\alpha in cot(sin1α+cos1α)=1\cot (\sin^{-1} \alpha + \cos^{-1} \alpha) = 1.
  4. Evaluate cot(sec1x+csc1x)\cot (\sec^{-1} x + \csc^{-1} x).
  5. Find the value of tan(cos1x+sin1x)\tan (\cos^{-1} x + \sin^{-1} x).

Tip: When working with inverse trigonometric functions, remember their domains and ranges to avoid undefined expressions or incorrect simplifications.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Inverse Trigonometric Functions

Formulas

Angle addition formula for tangent
Definition of cotangent function

Theorems

Properties of inverse trigonometric functions

Suitable Grade Level

Advanced High School