Let's go through each trigonometric expression one by one to find their exact values:
a. sec60∘
secθ=cosθ1
Since cos60∘=21,
sec60∘=211=2
b. csc45∘
cscθ=sinθ1
Since sin45∘=22,
csc45∘=221=22=2
c. cot120∘
cotθ=tanθ1
First, find tan120∘. Since tan120∘=−tan60∘=−3,
cot120∘=−31=−31=−33
d. sec300∘
sec300∘=cos300∘1
Since cos300∘=cos(360∘−60∘)=cos60∘=21,
sec300∘=211=2
e. csc135∘
csc135∘=sin135∘1
Since sin135∘=sin(180∘−45∘)=sin45∘=22,
csc135∘=221=2
f. cot330∘
cot330∘=tan330∘1
Since tan330∘=tan(360∘−30∘)=−tan30∘=−31,
cot330∘=−311=−3
g. sec150∘
sec150∘=cos150∘1
Since cos150∘=cos(180∘−30∘)=−cos30∘=−23,
sec150∘=−231=−32=−323
h. cot(−30∘)
cot(−30∘)=tan(−30∘)1
Since tan(−30∘)=−tan30∘=−31,
cot(−30∘)=−311=−3
Final Answers:
- a. sec60∘=2
- b. csc45∘=2
- c. cot120∘=−33
- d. sec300∘=2
- e. csc135∘=2
- f. cot330∘=−3
- g. sec150∘=−323
- h. cot(−30∘)=−3
Would you like further details or have any questions?
Related Questions:
- What is the exact value of sin210∘?
- How would you compute tan240∘?
- Can you explain why cot90∘ is undefined?
- What is the value of sec270∘ and why?
- How do you determine which quadrant an angle falls into for trigonometric evaluations?
Tip:
Remember that trigonometric functions repeat every 360∘ or 2π radians, which can simplify the calculation of angles larger than 360∘.