Math Problem Statement

Find the exact values of sec 60°, cosec 45°, cot 120°, sec 300°, cosec 135°, cot 330°, sec 150°, and cot(-30°).

Solution

Let's go through each trigonometric expression one by one to find their exact values:

a. sec60\sec 60^\circ

secθ=1cosθ\sec \theta = \frac{1}{\cos \theta} Since cos60=12\cos 60^\circ = \frac{1}{2}, sec60=112=2\sec 60^\circ = \frac{1}{\frac{1}{2}} = 2

b. csc45\csc 45^\circ

cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta} Since sin45=22\sin 45^\circ = \frac{\sqrt{2}}{2}, csc45=122=22=2\csc 45^\circ = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}

c. cot120\cot 120^\circ

cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta} First, find tan120\tan 120^\circ. Since tan120=tan60=3\tan 120^\circ = -\tan 60^\circ = -\sqrt{3}, cot120=13=13=33\cot 120^\circ = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}

d. sec300\sec 300^\circ

sec300=1cos300\sec 300^\circ = \frac{1}{\cos 300^\circ} Since cos300=cos(36060)=cos60=12\cos 300^\circ = \cos (360^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2}, sec300=112=2\sec 300^\circ = \frac{1}{\frac{1}{2}} = 2

e. csc135\csc 135^\circ

csc135=1sin135\csc 135^\circ = \frac{1}{\sin 135^\circ} Since sin135=sin(18045)=sin45=22\sin 135^\circ = \sin (180^\circ - 45^\circ) = \sin 45^\circ = \frac{\sqrt{2}}{2}, csc135=122=2\csc 135^\circ = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2}

f. cot330\cot 330^\circ

cot330=1tan330\cot 330^\circ = \frac{1}{\tan 330^\circ} Since tan330=tan(36030)=tan30=13\tan 330^\circ = \tan (360^\circ - 30^\circ) = -\tan 30^\circ = -\frac{1}{\sqrt{3}}, cot330=113=3\cot 330^\circ = \frac{1}{-\frac{1}{\sqrt{3}}} = -\sqrt{3}

g. sec150\sec 150^\circ

sec150=1cos150\sec 150^\circ = \frac{1}{\cos 150^\circ} Since cos150=cos(18030)=cos30=32\cos 150^\circ = \cos (180^\circ - 30^\circ) = -\cos 30^\circ = -\frac{\sqrt{3}}{2}, sec150=132=23=233\sec 150^\circ = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}

h. cot(30)\cot(-30^\circ)

cot(30)=1tan(30)\cot(-30^\circ) = \frac{1}{\tan(-30^\circ)} Since tan(30)=tan30=13\tan(-30^\circ) = -\tan 30^\circ = -\frac{1}{\sqrt{3}}, cot(30)=113=3\cot(-30^\circ) = \frac{1}{-\frac{1}{\sqrt{3}}} = -\sqrt{3}

Final Answers:

  • a. sec60=2\sec 60^\circ = 2
  • b. csc45=2\csc 45^\circ = \sqrt{2}
  • c. cot120=33\cot 120^\circ = -\frac{\sqrt{3}}{3}
  • d. sec300=2\sec 300^\circ = 2
  • e. csc135=2\csc 135^\circ = \sqrt{2}
  • f. cot330=3\cot 330^\circ = -\sqrt{3}
  • g. sec150=233\sec 150^\circ = -\frac{2\sqrt{3}}{3}
  • h. cot(30)=3\cot(-30^\circ) = -\sqrt{3}

Would you like further details or have any questions?

Related Questions:

  1. What is the exact value of sin210\sin 210^\circ?
  2. How would you compute tan240\tan 240^\circ?
  3. Can you explain why cot90\cot 90^\circ is undefined?
  4. What is the value of sec270\sec 270^\circ and why?
  5. How do you determine which quadrant an angle falls into for trigonometric evaluations?

Tip:

Remember that trigonometric functions repeat every 360360^\circ or 2π2\pi radians, which can simplify the calculation of angles larger than 360360^\circ.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Functions
Angle Measurement in Degrees

Formulas

sec(θ) = 1/cos(θ)
cosec(θ) = 1/sin(θ)
cot(θ) = 1/tan(θ)

Theorems

Unit Circle Theorem
Trigonometric Function Symmetry

Suitable Grade Level

Grades 10-12