Math Problem Statement

Find all distinct roots (real or complex) of z2+(-1+i)z+(6-18i). The correct answer is (-2-4i) and (3+3i). Show me the steps to get that answer

Solution

To find the distinct roots of the given quadratic equation in the form:

z2+(1+i)z+(618i)=0z^2 + (-1 + i)z + (6 - 18i) = 0

We'll use the quadratic formula, which is given by:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

For this equation, we have:

  • a=1a = 1 (the coefficient of z2z^2),
  • b=1+ib = -1 + i (the coefficient of zz),
  • c=618ic = 6 - 18i (the constant term).

Step 1: Identify aa, bb, and cc

a=1,b=1+i,c=618ia = 1, \quad b = -1 + i, \quad c = 6 - 18i

Step 2: Compute the discriminant, Δ=b24ac\Delta = b^2 - 4ac

We need to compute b2b^2 and 4ac4ac separately.

(i) Calculate b2b^2:

b2=(1+i)2=(1)2+2(1)(i)+(i)2=12i1=2ib^2 = (-1 + i)^2 = (-1)^2 + 2(-1)(i) + (i)^2 = 1 - 2i - 1 = -2i

(ii) Calculate 4ac4ac:

4ac=4×1×(618i)=4(618i)=2472i4ac = 4 \times 1 \times (6 - 18i) = 4(6 - 18i) = 24 - 72i

(iii) Compute the discriminant:

Δ=b24ac=2i(2472i)=2i24+72i=70i24\Delta = b^2 - 4ac = -2i - (24 - 72i) = -2i - 24 + 72i = 70i - 24 Thus, the discriminant is: Δ=24+70i\Delta = -24 + 70i

Step 3: Compute Δ\sqrt{\Delta}

To calculate 24+70i\sqrt{-24 + 70i}, we first convert it to polar form.

  • The modulus rr is given by r=(24)2+(70)2=576+4900=5476=74r = \sqrt{(-24)^2 + (70)^2} = \sqrt{576 + 4900} = \sqrt{5476} = 74.
  • The argument θ\theta is tan1(7024)=tan1(7024)108.43\tan^{-1}\left( \frac{70}{-24} \right) = \tan^{-1}\left( -\frac{70}{24} \right) \approx 108.43^\circ.

Thus, in polar form: 24+70i=74(cos(θ2)+isin(θ2))\sqrt{-24 + 70i} = \sqrt{74} \left( \cos\left( \frac{\theta}{2} \right) + i \sin\left( \frac{\theta}{2} \right) \right)

Calculating further will give the square root.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Quadratic Equations
Polar Coordinates

Formulas

Quadratic formula: z = (-b ± √(b² - 4ac)) / 2a

Theorems

Quadratic formula
Complex Number Square Root Theorem

Suitable Grade Level

College Level