Math Problem Statement

Find all distinct roots (real or complex) of z2+(−1+i)z+(6−18i). Enter the roots as a comma-separated list of values of the form a+bi.

Solution

We are tasked with finding the distinct roots of the quadratic equation:

z2+(1+i)z+(618i)=0z^2 + (-1 + i)z + (6 - 18i) = 0

This is a quadratic equation of the form az2+bz+c=0az^2 + bz + c = 0, where:

  • a=1a = 1,
  • b=1+ib = -1 + i,
  • c=618ic = 6 - 18i.

To find the roots, we use the quadratic formula:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Step 1: Identify the coefficients

The coefficients are:

  • a=1a = 1,
  • b=1+ib = -1 + i,
  • c=618ic = 6 - 18i.

Step 2: Compute the discriminant

The discriminant is given by:

Δ=b24ac\Delta = b^2 - 4ac

Substitute b=1+ib = -1 + i, a=1a = 1, and c=618ic = 6 - 18i:

Δ=(1+i)24(1)(618i)\Delta = (-1 + i)^2 - 4(1)(6 - 18i)

First, calculate (1+i)2(-1 + i)^2:

(1+i)2=(1)2+2(1)(i)+i2=12i1=2i(-1 + i)^2 = (-1)^2 + 2(-1)(i) + i^2 = 1 - 2i - 1 = -2i

Next, calculate 4ac4ac:

4ac=4(618i)=2472i4ac = 4(6 - 18i) = 24 - 72i

Now, compute the discriminant:

Δ=2i(2472i)=2i24+72i=70i24\Delta = -2i - (24 - 72i) = -2i - 24 + 72i = 70i - 24

Thus, the discriminant is:

Δ=24+70i\Delta = -24 + 70i

Step 3: Compute the square root of the discriminant

We need to find the square root of Δ=24+70i\Delta = -24 + 70i. To do this, we express it in polar form and then take the square root.

  • The modulus rr is given by:

r=(24)2+(70)2=576+4900=5476=74r = \sqrt{(-24)^2 + (70)^2} = \sqrt{576 + 4900} = \sqrt{5476} = 74

  • The argument θ\theta is:

θ=tan1(7024)=tan1(7024)1.854 radians\theta = \tan^{-1}\left(\frac{70}{-24}\right) = \tan^{-1}\left(\frac{-70}{24}\right) \approx 1.854 \text{ radians}

The square root of Δ=74cis(1.854)\Delta = 74 \text{cis}(1.854) is:

[ \sqrt{\Delta} = \sqrt{74} \text{cis}\left(\frac{1.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Complex Numbers
Quadratic Equations

Formulas

Quadratic equation formula: z = (-b ± √(b^2 - 4ac)) / 2a
Complex number operations
Square root of complex numbers

Theorems

Quadratic Formula
Properties of Complex Numbers

Suitable Grade Level

Grades 11-12