Math Problem Statement

Solve: Find all solutions of the quadratic equation z2 + (6− 4i)z + 10= 0.

Solution

We are tasked with solving the quadratic equation:

z2+(64i)z+10=0z^2 + (6 - 4i)z + 10 = 0

To solve this, we will use the quadratic formula:

z=b±b24ac2az = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

For the given equation, the coefficients are:

  • a=1a = 1 (coefficient of z2z^2),
  • b=64ib = 6 - 4i (coefficient of zz),
  • c=10c = 10 (constant term).

Substituting these values into the quadratic formula:

z=(64i)±(64i)24(1)(10)2(1)z = \frac{-(6 - 4i) \pm \sqrt{(6 - 4i)^2 - 4(1)(10)}}{2(1)}

First, let's compute the discriminant (b24acb^2 - 4ac):

(64i)2=622(6)(4i)+(4i)2=3648i16=2048i(6 - 4i)^2 = 6^2 - 2(6)(4i) + (4i)^2 = 36 - 48i - 16 = 20 - 48i 4ac=4(1)(10)=404ac = 4(1)(10) = 40 So the discriminant is:

2048i40=2048i20 - 48i - 40 = -20 - 48i

Now, we substitute the discriminant back into the quadratic formula:

z=(64i)±2048i2z = \frac{-(6 - 4i) \pm \sqrt{-20 - 48i}}{2}

The next step involves calculating 2048i\sqrt{-20 - 48i}. To do this, we will express the complex number in polar form and then take the square root.

  1. First, find the modulus rr of 2048i-20 - 48i:

r=(20)2+(48)2=400+2304=2704=52r = \sqrt{(-20)^2 + (-48)^2} = \sqrt{400 + 2304} = \sqrt{2704} = 52

  1. Next, find the argument θ\theta (the angle):

θ=tan1(4820)=tan1(2.4)\theta = \tan^{-1}\left(\frac{-48}{-20}\right) = \tan^{-1}(2.4)

Approximating tan1(2.4)\tan^{-1}(2.4), we get θ1.176\theta \approx 1.176 radians.

  1. Now we take the square root in polar form. The square root of a complex number r(cosθ+isinθ)r(\cos \theta + i \sin \theta) is:

r(cos(θ2)+isin(θ2))\sqrt{r} \left( \cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right)

Thus:

52(cos(1.1762)+isin(1.1762))=7.211(cos(0.588)+isin(0.588))\sqrt{52} \left( \cos\left(\frac{1.176}{2}\right) + i \sin\left(\frac{1.176}{2}\right) \right) = 7.211 \left( \cos(0.588) + i \sin(0.588) \right)

Approximating cos(0.588)0.832\cos(0.588) \approx 0.832 and sin(0.588)0.554\sin(0.588) \approx 0.554, we get:

2048i7.211(0.832+0.554i)=6.002+4.0i\sqrt{-20 - 48i} \approx 7.211(0.832 + 0.554i) = 6.002 + 4.0i

Now, we substitute this back into the quadratic formula:

z=(64i)±(6.002+4.0i)2z = \frac{-(6 - 4i) \pm (6.002 + 4.0i)}{2}

This gives us two solutions:

  1. For the plus sign:

z=(64i)+(6.002+4.0i)2=6+4i+6.002+4.0i2=0.002+8i2=0.001+4iz = \frac{-(6 - 4i) + (6.002 + 4.0i)}{2} = \frac{-6 + 4i + 6.002 + 4.0i}{2} = \frac{0.002 + 8i}{2} = 0.001 + 4i

  1. For the minus sign:

z=(64i)(6.002+4.0i)2=6+4i6.0024.0i2=12.002+0i2=6.001z = \frac{-(6 - 4i) - (6.002 + 4.0i)}{2} = \frac{-6 + 4i - 6.002 - 4.0i}{2} = \frac{-12.002 + 0i}{2} = -6.001

Thus, the solutions to the quadratic equation are:

z1=0.001+4iandz2=6.001z_1 = 0.001 + 4i \quad \text{and} \quad z_2 = -6.001


Would you like a more detailed explanation of any of the steps? Here are some related questions that may be helpful:

  1. How do you find the modulus and argument of a complex number?
  2. What is the geometric interpretation of the square root of a complex number?
  3. How can you verify the solutions to a quadratic equation using substitution?
  4. How do you solve a quadratic equation when the coefficients are complex numbers?
  5. What is the significance of the discriminant in a quadratic equation?

Tip: When dealing with complex numbers, always express them in polar form before performing operations like taking square roots or raising to powers!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Quadratic Equations
Polar Form
Square Roots of Complex Numbers

Formulas

Quadratic formula: z = (-b ± √(b^2 - 4ac)) / 2a
Modulus of a complex number: r = √(a^2 + b^2)
Argument of a complex number: θ = tan⁻¹(b/a)
Square root of a complex number in polar form: √r (cos(θ/2) + i sin(θ/2))

Theorems

Quadratic formula
Square root of complex numbers in polar form

Suitable Grade Level

Grades 10-12