Math Problem Statement
Find derivative using l hospital rule
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Limits
L'Hôpital's Rule
Indeterminate Forms
Formulas
L'Hôpital's Rule: \( \lim_{{x \to a}} \frac{f(x)}{g(x)} = \lim_{{x \to a}} \frac{f'(x)}{g'(x)} \) if \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \)
Exponential function derivative: \( \frac{d}{dx}(a^x) = a^x \ln(a) \)
Theorems
L'Hôpital's Rule
Suitable Grade Level
University Level (Calculus I)
Related Recommendation
Approximate the Limit \( \lim_{x \to 0} \frac{3^x - 2^x}{x} \)
Evaluate the Limit \( \lim_{x \to 0^+} (1 + x)^{1/x} \) Using L'Hôpital's Rule
Evaluating Limit using Symbolic Notation: \( \lim_{x \to 0} \frac{3x^2}{1 - e^x} \)
Solving Limit Using L'Hôpital's Rule - Example Problem
Limit of (ln(3 - 2e^x)) / x as x approaches 0