Math Problem Statement
Find the derivative of cube root of x using delta x
Solution
To find the derivative of using the definition of the derivative, we apply the limit definition:
Here, , so:
[ f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt[3]{x + \Delta x} - \sqrt[3]{x}}{\Delta x} ]
To simplify this expression, we use the identity for the difference of cubes:
Setting and , the expression becomes:
[ \left(\sqrt[3]{x + \Delta x} - \sqrt[3]{x}\right)\left(\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right) = x + \Delta x - x = \Delta x ]
So, we have:
[ \Delta x = \left(\sqrt[3]{x + \Delta x} - \sqrt[3]{x}\right)\left(\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right) ]
This gives us:
[ \frac{\Delta x}{\sqrt[3]{x + \Delta x} - \sqrt[3]{x}} = \left(\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right) ]
Now, substituting into the original limit:
[ f'(x) = \lim_{\Delta x \to 0} \frac{1}{\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2} ]
As approaches 0, approaches , so:
[ f'(x) = \frac{1}{3
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Derivatives
Limit Definition of Derivative
Formulas
Limit definition of derivative
Theorems
-
Suitable Grade Level
Advanced High School or College