Math Problem Statement

Find the derivative of cube root of x using delta x

Solution

To find the derivative of f(x)=x3f(x) = \sqrt[3]{x} using the definition of the derivative, we apply the limit definition:

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}

Here, f(x)=x3f(x) = \sqrt[3]{x}, so:

[ f'(x) = \lim_{\Delta x \to 0} \frac{\sqrt[3]{x + \Delta x} - \sqrt[3]{x}}{\Delta x} ]

To simplify this expression, we use the identity for the difference of cubes:

a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)

Setting a=x+Δx3a = \sqrt[3]{x + \Delta x} and b=x3b = \sqrt[3]{x}, the expression becomes:

[ \left(\sqrt[3]{x + \Delta x} - \sqrt[3]{x}\right)\left(\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right) = x + \Delta x - x = \Delta x ]

So, we have:

[ \Delta x = \left(\sqrt[3]{x + \Delta x} - \sqrt[3]{x}\right)\left(\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right) ]

This gives us:

[ \frac{\Delta x}{\sqrt[3]{x + \Delta x} - \sqrt[3]{x}} = \left(\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right) ]

Now, substituting into the original limit:

[ f'(x) = \lim_{\Delta x \to 0} \frac{1}{\left(\sqrt[3]{x + \Delta x}\right)^2 + \sqrt[3]{x + \Delta x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2} ]

As Δx\Delta x approaches 0, x+Δx3\sqrt[3]{x + \Delta x} approaches x3\sqrt[3]{x}, so:

[ f'(x) = \frac{1}{3

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivatives
Limit Definition of Derivative

Formulas

Limit definition of derivative

Theorems

-

Suitable Grade Level

Advanced High School or College