Math Problem Statement

Find the curvature of the curve r(t) = <4cos(3t), 4sin(3t), 5t> at the point t = 0. Give your answer to two decimal places.

Solution

To solve the problem of finding the curvature κ(t)\kappa(t) of the given vector-valued function r(t)=4cos(3t),4sin(3t),5t\mathbf{r}(t) = \langle 4\cos(3t), 4\sin(3t), 5t \rangle at t=0t = 0, we follow these steps:

Formula for Curvature

The curvature κ(t)\kappa(t) of a vector-valued function r(t)\mathbf{r}(t) is given by: κ(t)=r(t)×r(t)r(t)3.\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}.

Step 1: Compute r(t)\mathbf{r}'(t)

The derivative of r(t)\mathbf{r}(t) is: r(t)=ddt4cos(3t),4sin(3t),5t=12sin(3t),12cos(3t),5.\mathbf{r}'(t) = \frac{d}{dt}\langle 4\cos(3t), 4\sin(3t), 5t \rangle = \langle -12\sin(3t), 12\cos(3t), 5 \rangle.

At t=0t = 0, we have: r(0)=12sin(0),12cos(0),5=0,12,5.\mathbf{r}'(0) = \langle -12\sin(0), 12\cos(0), 5 \rangle = \langle 0, 12, 5 \rangle.

Step 2: Compute r(t)\mathbf{r}''(t)

The second derivative of r(t)\mathbf{r}(t) is: r(t)=ddt12sin(3t),12cos(3t),5=36cos(3t),36sin(3t),0.\mathbf{r}''(t) = \frac{d}{dt}\langle -12\sin(3t), 12\cos(3t), 5 \rangle = \langle -36\cos(3t), -36\sin(3t), 0 \rangle.

At t=0t = 0, we have: r(0)=36cos(0),36sin(0),0=36,0,0.\mathbf{r}''(0) = \langle -36\cos(0), -36\sin(0), 0 \rangle = \langle -36, 0, 0 \rangle.

Step 3: Compute r(t)×r(t)\mathbf{r}'(t) \times \mathbf{r}''(t)

The cross product r(t)×r(t)\mathbf{r}'(t) \times \mathbf{r}''(t) is calculated as:

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 12 & 5 \\ -36 & 0 & 0 \end{vmatrix}.$$ Expanding the determinant: $$\mathbf{r}'(t) \times \mathbf{r}''(t) = \mathbf{i} \begin{vmatrix} 12 & 5 \\ 0 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 0 & 5 \\ -36 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 0 & 12 \\ -36 & 0 \end{vmatrix}.$$ $$= \mathbf{i}(12 \cdot 0 - 5 \cdot 0) - \mathbf{j}(0 \cdot 0 - (-36) \cdot 5) + \mathbf{k}(0 \cdot 0 - (-36) \cdot 12).$$ $$= \mathbf{i}(0) - \mathbf{j}(180) + \mathbf{k}(432).$$ $$\mathbf{r}'(t) \times \mathbf{r}''(t) = \langle 0, -180, 432 \rangle.$$ ### Step 4: Compute Magnitudes First, compute $$\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|$$: $$\|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = \sqrt{0^2 + (-180)^2 + 432^2} = \sqrt{32400 + 186624} = \sqrt{219024} = 468.$$ Next, compute $$\|\mathbf{r}'(t)\|$$: $$\|\mathbf{r}'(t)\| = \sqrt{0^2 + 12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13.$$ ### Step 5: Compute $$\kappa(t)$$ $$\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}.$$ At $$t = 0$$: $$\kappa(0) = \frac{468}{13^3} = \frac{468}{2197} \approx 0.21.$$ ### Final Answer: The curvature of the curve at $$t = 0$$ is **0.21**. --- Would you like further clarification on any step? Here are 5 related questions to deepen your understanding: 1. What is the physical significance of curvature in 3D curves? 2. How does the curvature formula differ for 2D vs. 3D curves? 3. What role do cross products play in determining curvature? 4. How does a curve's parameterization affect the curvature calculation? 5. Can you derive curvature for a specific case like a circle? **Tip:** Always double-check intermediate calculations to ensure precision in multi-step problems like this!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Curvature of a curve
Vector calculus
Cross product
Magnitude of a vector

Formulas

Curvature formula: κ(t) = ||r'(t) × r''(t)|| / ||r'(t)||³
Cross product determinant for vectors
Magnitude of a vector: ||v|| = √(v₁² + v₂² + v₃²)

Theorems

-

Suitable Grade Level

Undergraduate (Calculus III level)