Math Problem Statement

Let α and β be first quadrant angles with cos(α) = √10/9 and sin(β) = √10/9. Find cos(α + β).

Solution

We are asked to find cos(α+β)\cos(\alpha + \beta), given that:

cos(α)=109,sin(β)=109\cos(\alpha) = \frac{\sqrt{10}}{9}, \quad \sin(\beta) = \frac{\sqrt{10}}{9}

Step 1: Use the cosine addition formula

The cosine addition formula is:

cos(α+β)=cos(α)cos(β)sin(α)sin(β)\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)

Step 2: Determine sin(α)\sin(\alpha) and cos(β)\cos(\beta)

  • Since α\alpha and β\beta are first quadrant angles, we know that both sine and cosine values are positive.

  • We can find sin(α)\sin(\alpha) using the identity:

sin2(α)+cos2(α)=1\sin^2(\alpha) + \cos^2(\alpha) = 1

Substitute cos(α)=109\cos(\alpha) = \frac{\sqrt{10}}{9}:

sin2(α)+(109)2=1\sin^2(\alpha) + \left(\frac{\sqrt{10}}{9}\right)^2 = 1

sin2(α)+1081=1\sin^2(\alpha) + \frac{10}{81} = 1

sin2(α)=11081=81811081=7181\sin^2(\alpha) = 1 - \frac{10}{81} = \frac{81}{81} - \frac{10}{81} = \frac{71}{81}

sin(α)=7181=719\sin(\alpha) = \sqrt{\frac{71}{81}} = \frac{\sqrt{71}}{9}

  • Now, find cos(β)\cos(\beta) using the same identity:

sin2(β)+cos2(β)=1\sin^2(\beta) + \cos^2(\beta) = 1

Substitute sin(β)=109\sin(\beta) = \frac{\sqrt{10}}{9}:

(109)2+cos2(β)=1\left(\frac{\sqrt{10}}{9}\right)^2 + \cos^2(\beta) = 1

1081+cos2(β)=1\frac{10}{81} + \cos^2(\beta) = 1

cos2(β)=11081=7181\cos^2(\beta) = 1 - \frac{10}{81} = \frac{71}{81}

cos(β)=719\cos(\beta) = \frac{\sqrt{71}}{9}

Step 3: Apply the values into the formula

Now substitute cos(α)\cos(\alpha), sin(α)\sin(\alpha), cos(β)\cos(\beta), and sin(β)\sin(\beta) into the cosine addition formula:

cos(α+β)=(109)(719)(719)(109)\cos(\alpha + \beta) = \left(\frac{\sqrt{10}}{9}\right)\left(\frac{\sqrt{71}}{9}\right) - \left(\frac{\sqrt{71}}{9}\right)\left(\frac{\sqrt{10}}{9}\right)

Both terms are the same, so:

cos(α+β)=0\cos(\alpha + \beta) = 0

Final Answer:

cos(α+β)=0\cos(\alpha + \beta) = 0


Do you want more details or have any questions about this solution? Here are some related questions:

  1. How do we derive the cosine addition formula?
  2. Why are sine and cosine positive in the first quadrant?
  3. How do we solve for the other trigonometric function if one is given?
  4. What are other identities involving cosine and sine for sums and differences?
  5. Can we find sin(α+β)\sin(\alpha + \beta) as well?

Tip: Always remember to use the Pythagorean identity to find the missing trigonometric function when given one.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Addition Formula
Pythagorean Identity

Formulas

cos(α + β) = cos(α)cos(β) - sin(α)sin(β)
sin^2(θ) + cos^2(θ) = 1

Theorems

Pythagorean Identity
Cosine Addition Formula

Suitable Grade Level

Grades 10-12