Math Problem Statement

Про множини A і B відомо, що |A ∩ B| = 30, |A ∪ B| = 86, |A| = 42, |B| = 34. Знайдіть потужність булеану множини A' \ B.

Solution

The problem is about calculating the cardinality of a set difference involving complement sets.

Given:

  • AB=30|A \cap B| = 30
  • AB=86|A \cup B| = 86
  • A=42|A| = 42
  • B=34|B| = 34

Goal: Find AB|A' \setminus B|, where AA' represents the complement of AA.

Solution:

  1. Calculate the universal set cardinality U|U|: Since AA' and BB' relate to complements, we first need the cardinality of the universal set U|U|.

    From the union formula: AB=A+BAB|A \cup B| = |A| + |B| - |A \cap B| Substitute the values: 86=42+343086 = 42 + 34 - 30 So, the values are consistent, and U=86|U| = 86.

  2. Calculate A|A'|: The complement AA' represents elements not in AA, so: A=UA=8642=44|A'| = |U| - |A| = 86 - 42 = 44

  3. Calculate AB|A' \cap B|: Use the formula: AB=A+BAB|A \cup B| = |A| + |B| - |A \cap B|

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Set Operations
Complement of a Set
Set Difference

Formulas

|A ∪ B| = |A| + |B| - |A ∩ B|
|A'| = |U| - |A|
|A' \ B| = |A' ∩ B|

Theorems

Union and Intersection of Sets
Complement of a Set

Suitable Grade Level

Grades 10-12