Math Problem Statement

Use unit vectors to express the vector C⃗, where C⃗=3.00A⃗−4.00B⃗.

Express your answer in terms of the unit vectors i^ and j^. Use the 'unit vector' button to denote unit vectors in your answer. Express the coefficients in meters

Solution

To express the vector C\vec{C} in terms of the unit vectors i^\hat{i} and j^\hat{j}, we first need to calculate C=3.00A4.00B\vec{C} = 3.00\vec{A} - 4.00\vec{B} using the given information.

Given:

  1. Vector A\vec{A}: A1.23i^+3.38j^meters\vec{A} \approx 1.23\hat{i} + 3.38\hat{j} \, \text{meters}

  2. Vector B\vec{B}:

    • Magnitude of B=2.40\vec{B} = 2.40 meters.
    • Angle with the negative x-axis is 30.030.0^\circ.
    • Since B\vec{B} is in the third quadrant, the x-component will be negative, and the y-component will also be negative.

    The components of B\vec{B} are: Bx=Bcos(30.0)=2.40cos(30.0)B_x = -B \cos(30.0^\circ) = -2.40 \cos(30.0^\circ) By=Bsin(30.0)=2.40sin(30.0)B_y = -B \sin(30.0^\circ) = -2.40 \sin(30.0^\circ)

    Let's calculate: Bx=2.40×0.8662.08metersB_x = -2.40 \times 0.866 \approx -2.08 \, \text{meters} By=2.40×0.5001.20metersB_y = -2.40 \times 0.500 \approx -1.20 \, \text{meters}

    Therefore: B2.08i^1.20j^meters\vec{B} \approx -2.08\hat{i} - 1.20\hat{j} \, \text{meters}

Now, calculate C=3.00A4.00B\vec{C} = 3.00\vec{A} - 4.00\vec{B}:

C=3.00(1.23i^+3.38j^)4.00(2.08i^1.20j^)\vec{C} = 3.00(1.23\hat{i} + 3.38\hat{j}) - 4.00(-2.08\hat{i} - 1.20\hat{j})

Expand and combine like terms:

C=(3.69i^+10.14j^)+(8.32i^+4.80j^)\vec{C} = (3.69\hat{i} + 10.14\hat{j}) + (8.32\hat{i} + 4.80\hat{j})

Combine the components:

C=(3.69+8.32)i^+(10.14+4.80)j^\vec{C} = (3.69 + 8.32)\hat{i} + (10.14 + 4.80)\hat{j}

Simplifying:

C=12.01i^+14.94j^meters\vec{C} = 12.01\hat{i} + 14.94\hat{j} \, \text{meters}

Final Answer:

C12.01i^+14.94j^meters\vec{C} \approx 12.01\hat{i} + 14.94\hat{j} \, \text{meters}

Do you want details or have any questions?

Here are 5 related questions:

  1. How do you multiply a vector by a scalar?
  2. What are the properties of vector addition and subtraction?
  3. How can you find the magnitude of vector C\vec{C} after combining A\vec{A} and B\vec{B}?
  4. How do you determine the direction of vector C\vec{C} based on its components?
  5. What happens if vectors A\vec{A} and B\vec{B} are perpendicular to each other?

Tip: When dealing with vectors, always be mindful of the signs of the components, especially when the vectors are in different quadrants.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Unit vectors
Vector addition
Scalar multiplication

Formulas

-

Theorems

-

Suitable Grade Level

Grades 10-12