Math Problem Statement

Jika A = (2, 3), B = (-1, 5) dan C = (1, 0), maka hasil dari 2A + B - C = .....

Solution

The image presents a vector algebra problem. It defines three vectors A=(23)A = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, B=(15)B = \begin{pmatrix} -1 \\ 5 \end{pmatrix}, and C=(10)C = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. The goal is to compute 2A+BC2A + B - C.

Let's proceed step by step:

  1. Compute 2A2A: 2A=2×(23)=(46)2A = 2 \times \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}

  2. Add BB to 2A2A: 2A+B=(46)+(15)=(4+(1)6+5)=(311)2A + B = \begin{pmatrix} 4 \\ 6 \end{pmatrix} + \begin{pmatrix} -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 + (-1) \\ 6 + 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 11 \end{pmatrix}

  3. Subtract CC from the result: 2A+BC=(311)(10)=(31110)=(211)2A + B - C = \begin{pmatrix} 3 \\ 11 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 - 1 \\ 11 - 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 11 \end{pmatrix}

Thus, the result of 2A+BC2A + B - C is (211)\begin{pmatrix} 2 \\ 11 \end{pmatrix}.

Would you like any further details or clarifications? Here are 5 related questions to expand on this topic:

  1. What are the properties of vector addition and scalar multiplication?
  2. How do you represent vector operations geometrically?
  3. Can you compute 3A2B+C3A - 2B + C for the same vectors AA, BB, and CC?
  4. How do vector operations relate to matrix operations?
  5. How can you use vector operations to solve real-world problems?

Tip: Always keep track of the order of operations when performing vector arithmetic to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Vector Addition
Scalar Multiplication

Formulas

Vector addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
Scalar multiplication: k * (x, y) = (k*x, k*y)

Theorems

Vector Operations

Suitable Grade Level

Grades 10-12