Math Problem Statement

8 { ( \dfrac{ 2 }{ 3 } ) }^{ 4 } -4 { ( \dfrac{ 2 }{ 3 } ) }^{ 5 } +2 { ( \dfrac{ 2 }{ 3 } ) }^{ 6 } +6 { ( \dfrac{ 2 }{ 3 } ) }^{ 7 } express as 2^m/3^n

Solution

To express the given expression in the form 2m3n\frac{2^m}{3^n}, let's work through each term step by step.

Given Expression:

8(23)44(23)5+2(23)6+6(23)78 \left( \frac{2}{3} \right)^4 - 4 \left( \frac{2}{3} \right)^5 + 2 \left( \frac{2}{3} \right)^6 + 6 \left( \frac{2}{3} \right)^7

Step 1: Expand Each Term

  1. 8(23)48 \left( \frac{2}{3} \right)^4 82434=81681=128818 \cdot \frac{2^4}{3^4} = \frac{8 \cdot 16}{81} = \frac{128}{81}

  2. 4(23)5-4 \left( \frac{2}{3} \right)^5 42535=432243=128243-4 \cdot \frac{2^5}{3^5} = -4 \cdot \frac{32}{243} = -\frac{128}{243}

  3. 2(23)62 \left( \frac{2}{3} \right)^6 22636=264729=1287292 \cdot \frac{2^6}{3^6} = 2 \cdot \frac{64}{729} = \frac{128}{729}

  4. 6(23)76 \left( \frac{2}{3} \right)^7 62737=61282187=76821876 \cdot \frac{2^7}{3^7} = 6 \cdot \frac{128}{2187} = \frac{768}{2187}

Step 2: Combine the Terms

Combine all these fractions together:

12881128243+128729+7682187\frac{128}{81} - \frac{128}{243} + \frac{128}{729} + \frac{768}{2187}

Step 3: Express as 2m3n\frac{2^m}{3^n}

Notice that each term has a factor of 272^7 (or 128128), so we can factor out 12837\frac{128}{3^7} from the expression:

12837(2187812187243+2187729+6)\frac{128}{3^7} \left( \frac{2187}{81} - \frac{2187}{243} + \frac{2187}{729} + 6 \right)

Now simplify the expression inside the parentheses:

218781=27,2187243=9,2187729=3\frac{2187}{81} = 27, \quad \frac{2187}{243} = 9, \quad \frac{2187}{729} = 3

Expression becomes: 279+3+6=27\text{Expression becomes: } 27 - 9 + 3 + 6 = 27

Thus, the entire expression simplifies to:

1282737=1283337=12834=2734\frac{128 \cdot 27}{3^7} = \frac{128 \cdot 3^3}{3^7} = \frac{128}{3^{4}} = \frac{2^7}{3^4}

Final Answer:

2734\frac{2^7}{3^4}

Summary:

The given expression simplifies to 2734\frac{2^7}{3^4}.

Would you like more details or have any questions?

Here are five related questions for practice:

  1. Simplify 16(25)34(25)4+(25)516 \left(\frac{2}{5}\right)^3 - 4 \left(\frac{2}{5}\right)^4 + \left(\frac{2}{5}\right)^5.
  2. Express 36×2234×243^6 \times 2^2 - 3^4 \times 2^4 as a single power of 2m3n\frac{2^m}{3^n}.
  3. How would you simplify 28352734+2633\frac{2^8}{3^5} - \frac{2^7}{3^4} + \frac{2^6}{3^3}?
  4. Factor x44x2+4x^4 - 4x^2 + 4 completely.
  5. Express (34)3(34)5+(34)7\left(\frac{3}{4}\right)^3 - \left(\frac{3}{4}\right)^5 + \left(\frac{3}{4}\right)^7 as a single fraction.

Tip: When simplifying complex algebraic expressions, look for common factors that can be factored out to make the process easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Fractional Powers
Simplification of Expressions

Formulas

-

Theorems

-

Suitable Grade Level

High School