Math Problem Statement

8 { ( \dfrac{ 2 }{ 3 } ) }^{ 4 } -4 { ( \dfrac{ 2 }{ 3 } ) }^{ 5 } +2 { ( \dfrac{ 2 }{ 3 } ) }^{ 6 } +6 { ( \dfrac{ 2 }{ 3 } ) }^{ 7 } express as 2^m/3^n

Solution

To express the given expression as 2m3n\frac{2^m}{3^n}, let's start by simplifying each term.

The given expression is:

8(23)44(23)5+2(23)6+6(23)78 \left(\frac{2}{3}\right)^4 - 4 \left(\frac{2}{3}\right)^5 + 2 \left(\frac{2}{3}\right)^6 + 6 \left(\frac{2}{3}\right)^7

Step 1: Simplify Each Term

  1. 8(23)48 \left(\frac{2}{3}\right)^4 =82434=82434=2734= 8 \cdot \frac{2^4}{3^4} = \frac{8 \cdot 2^4}{3^4} = \frac{2^7}{3^4}

  2. 4(23)5-4 \left(\frac{2}{3}\right)^5 =42535=42535=2735= -4 \cdot \frac{2^5}{3^5} = -\frac{4 \cdot 2^5}{3^5} = -\frac{2^7}{3^5}

  3. 2(23)62 \left(\frac{2}{3}\right)^6 =22636=22636=2736= 2 \cdot \frac{2^6}{3^6} = \frac{2 \cdot 2^6}{3^6} = \frac{2^7}{3^6}

  4. 6(23)76 \left(\frac{2}{3}\right)^7 =62737=62737=27337=2736= 6 \cdot \frac{2^7}{3^7} = \frac{6 \cdot 2^7}{3^7} = \frac{2^7 \cdot 3}{3^7} = \frac{2^7}{3^6}

Step 2: Combine the Terms

Now, the expression becomes: 27342735+2736+2736\frac{2^7}{3^4} - \frac{2^7}{3^5} + \frac{2^7}{3^6} + \frac{2^7}{3^6}

Factor out 2736\frac{2^7}{3^6} from each term: 27342735+2736+2736=2736(3213131+1+1)\frac{2^7}{3^4} - \frac{2^7}{3^5} + \frac{2^7}{3^6} + \frac{2^7}{3^6} = \frac{2^7}{3^6} \left(\frac{3^2}{1} - \frac{3^1}{3^1} + 1 + 1\right)

Simplify inside the parentheses: 2736(93+1+1)=27368\frac{2^7}{3^6} \left(9 - 3 + 1 + 1\right) = \frac{2^7}{3^6} \cdot 8

Now multiply: =272336=21036= \frac{2^7 \cdot 2^3}{3^6} = \frac{2^{10}}{3^6}

Thus, the expression simplifies to:

21036\frac{2^{10}}{3^6}

Final Answer

The expression in the form 2m3n\frac{2^m}{3^n} is: 21036\frac{2^{10}}{3^6} where m=10m = 10 and n=6n = 6.

Would you like any further details or have any questions? Here are some related questions you might be interested in:

  1. How do you factor out common terms in algebraic expressions?
  2. What is the importance of exponents in mathematical expressions?
  3. How do you simplify complex fractions?
  4. What is the significance of expressing equations in the form ambn\frac{a^m}{b^n}?
  5. How can you use algebraic identities to simplify expressions?

Tip: When simplifying expressions, always look for common factors to factor out, which can make the problem much easier to handle.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fractional Exponents
Simplification of Algebraic Expressions

Formulas

-

Theorems

-

Suitable Grade Level

High School