Math Problem Statement

(3/2x+1)^3

Solution

To simplify the expression (32x+1)3\left(\frac{3}{2}x + 1\right)^3, follow these steps:

  1. Identify the expression inside the parentheses: 32x+1\frac{3}{2}x + 1 This expression represents a linear term where xx is a variable.

  2. Raise the entire expression to the power of 3: (32x+1)3\left(\frac{3}{2}x + 1\right)^3

    This can be expanded using the binomial theorem, which states that (a+b)3=a3+3a2b+3ab2+b3(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.

    Here, a=32xa = \frac{3}{2}x and b=1b = 1.

  3. Expand the expression: (32x)3+3(32x)2(1)+3(32x)(12)+13\left(\frac{3}{2}x\right)^3 + 3\left(\frac{3}{2}x\right)^2(1) + 3\left(\frac{3}{2}x\right)(1^2) + 1^3

    Now, calculate each term:

    • (32x)3=278x3\left(\frac{3}{2}x\right)^3 = \frac{27}{8}x^3
    • 3(32x)2(1)=3×94x2=274x23\left(\frac{3}{2}x\right)^2(1) = 3 \times \frac{9}{4}x^2 = \frac{27}{4}x^2
    • 3(32x)(12)=3×32x=92x3\left(\frac{3}{2}x\right)(1^2) = 3 \times \frac{3}{2}x = \frac{9}{2}x
    • 13=11^3 = 1

    Combine all the terms: 278x3+274x2+92x+1\frac{27}{8}x^3 + \frac{27}{4}x^2 + \frac{9}{2}x + 1

So, (32x+1)3\left(\frac{3}{2}x + 1\right)^3 expands to 278x3+274x2+92x+1\frac{27}{8}x^3 + \frac{27}{4}x^2 + \frac{9}{2}x + 1.

Would you like more details on the expansion, or do you have any questions?

Here are some related questions you might be interested in:

  1. How do you expand (2x+3)3(2x + 3)^3 using the binomial theorem?
  2. What is the cube of 23x+1\frac{2}{3}x + 1?
  3. How do you simplify (32x1)3\left(\frac{3}{2}x - 1\right)^3?
  4. How do you find the derivative of (32x+1)3\left(\frac{3}{2}x + 1\right)^3?
  5. What is the expansion of (ax+b)3(ax + b)^3 in general terms?

Tip: The binomial theorem is a powerful tool for expanding expressions raised to a power, especially when dealing with polynomials.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial theorem
Polynomial expansion

Formulas

Binomial theorem formula (a + b)^n

Theorems

Binomial theorem

Suitable Grade Level

Grades 10-12