Math Problem Statement

binomial of (3x^2 + 1)^3

Solution

To expand the binomial (3x2+1)3(3x^2 + 1)^3 using the Binomial Theorem, we'll apply the formula:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Here, a=3x2a = 3x^2, b=1b = 1, and n=3n = 3.

Let's calculate each term:

  1. Term 1: k=0k = 0
    (30)(3x2)3(1)0=1×(3x2)3=27x6\binom{3}{0} (3x^2)^{3} (1)^{0} = 1 \times (3x^2)^3 = 27x^6

  2. Term 2: k=1k = 1
    (31)(3x2)2(1)1=3×(3x2)2=27x4\binom{3}{1} (3x^2)^{2} (1)^1 = 3 \times (3x^2)^2 = 27x^4

  3. Term 3: k=2k = 2
    (32)(3x2)1(1)2=3×(3x2)=9x2\binom{3}{2} (3x^2)^{1} (1)^2 = 3 \times (3x^2) = 9x^2

  4. Term 4: k=3k = 3
    (33)(3x2)0(1)3=1×1=1\binom{3}{3} (3x^2)^{0} (1)^3 = 1 \times 1 = 1

Now, we combine all these terms:

(3x2+1)3=27x6+27x4+9x2+1(3x^2 + 1)^3 = 27x^6 + 27x^4 + 9x^2 + 1

Do you want more details or have any questions?

Here are some related questions:

  1. How do you expand a binomial using the Binomial Theorem?
  2. What are binomial coefficients, and how are they calculated?
  3. How would you expand (2x+3)4(2x + 3)^4 using the Binomial Theorem?
  4. What is Pascal’s Triangle, and how does it relate to binomial expansions?
  5. How do you find the middle term in a binomial expansion?

Tip: Remember that the sum of the exponents in each term of a binomial expansion equals the power nn of the binomial.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Theorem
Binomial Expansion
Combinatorics

Formulas

Binomial Theorem: (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Theorems

-

Suitable Grade Level

High School