Math Problem Statement

Use an addition or subtraction formula to find the exact value of sin(165)=Divide[Sqrt[A](40)Sqrt[B]-1(41),4]

Solution

To find the exact value of sin(165)\sin(165^\circ) using an addition or subtraction formula, we can break 165165^\circ into two angles whose sine and cosine values are known. For example:

165=18015165^\circ = 180^\circ - 15^\circ

Now, using the sine subtraction formula:

sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B

Substitute A=180A = 180^\circ and B=15B = 15^\circ:

sin(165)=sin(18015)=sin180cos15cos180sin15\sin(165^\circ) = \sin(180^\circ - 15^\circ) = \sin 180^\circ \cos 15^\circ - \cos 180^\circ \sin 15^\circ

We know:

sin180=0,cos180=1\sin 180^\circ = 0, \quad \cos 180^\circ = -1

Thus, the formula becomes:

sin(165)=0×cos15(1)×sin15\sin(165^\circ) = 0 \times \cos 15^\circ - (-1) \times \sin 15^\circ

sin(165)=sin15\sin(165^\circ) = \sin 15^\circ

Now, to calculate sin15\sin 15^\circ, we can use the sine subtraction formula again for 15=453015^\circ = 45^\circ - 30^\circ:

sin(15)=sin(4530)=sin45cos30cos45sin30\sin(15^\circ) = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ

From known values:

sin45=cos45=22,cos30=32,sin30=12\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 30^\circ = \frac{1}{2}

Substituting these values:

sin(15)=(22×32)(22×12)\sin(15^\circ) = \left( \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \right) - \left( \frac{\sqrt{2}}{2} \times \frac{1}{2} \right)

sin(15)=6424\sin(15^\circ) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}

sin(15)=624\sin(15^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

Therefore:

sin(165)=624\sin(165^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

Now, regarding the equation you provided:

You mentioned an expression that looks like:
Divide[A40×B141,4]\text{Divide}\left[\frac{\sqrt{A}}{40} \times \sqrt{B} - \frac{1}{41}, 4\right]

This expression doesn't directly align with the standard trigonometric formulas but could potentially be a different way of writing a trigonometric expression. However, the exact value of sin(165)\sin(165^\circ) is:

sin(165)=624\sin(165^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

If you'd like to clarify or if this equation is related to something else, feel free to ask!


Do you want more details or clarifications on any part of the solution?

Here are some follow-up questions:

  1. How do you derive the sine and cosine values for specific angles like 1515^\circ?
  2. What are some other useful addition and subtraction identities for trigonometric functions?
  3. Can you solve trigonometric equations using these formulas?
  4. How do you calculate values for trigonometric functions for non-standard angles?
  5. Why does sin(180)=0\sin(180^\circ) = 0 and cos(180)=1\cos(180^\circ) = -1?

Tip: Using known standard angle values (like 30°, 45°, 60°) will make solving trigonometric problems easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Addition and Subtraction Identities
Exact Trigonometric Values

Formulas

sin(A - B) = sin A cos B - cos A sin B
sin 15° = sin(45° - 30°) = sin 45° cos 30° - cos 45° sin 30°

Theorems

Trigonometric Addition and Subtraction Theorem

Suitable Grade Level

Grades 9-12