Math Problem Statement

cos(165°

Solution

To find cos(165)\cos(165^\circ), let's use the cosine function's properties:

  1. Convert 165165^\circ to an angle in a reference form: Since 165165^\circ is in the second quadrant, we know that cos(165)\cos(165^\circ) will be negative, and we can use the reference angle 180165=15180^\circ - 165^\circ = 15^\circ.

  2. Cosine Value: Now we calculate cos(165)=cos(15)\cos(165^\circ) = -\cos(15^\circ).

  3. Using the cosine of 15°: We know that cos(15)=cos(4530)=cos(45)cos(30)+sin(45)sin(30)\cos(15^\circ) = \cos(45^\circ - 30^\circ) = \cos(45^\circ) \cos(30^\circ) + \sin(45^\circ) \sin(30^\circ) Using known values: cos(45)=22,cos(30)=32,sin(45)=22,sin(30)=12\cos(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2}, \quad \sin(45^\circ) = \frac{\sqrt{2}}{2}, \quad \sin(30^\circ) = \frac{1}{2}

  4. Calculate cos(15)\cos(15^\circ): cos(15)=(22)(32)+(22)(12)\cos(15^\circ) = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right) Simplifying, =64+24=6+24= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}

  5. Final Answer: Therefore, cos(165)=6+24\cos(165^\circ) = -\frac{\sqrt{6} + \sqrt{2}}{4}

So, cos(165)=6+24\cos(165^\circ) = -\frac{\sqrt{6} + \sqrt{2}}{4}.

Would you like further details or have any questions?

Here are some related questions:

  1. How do you find the sine of an angle in the second quadrant?
  2. How do reference angles help in trigonometric calculations?
  3. What is the difference between radians and degrees?
  4. How does the cosine function behave in different quadrants?
  5. How can trigonometric identities simplify calculations?

Tip: Remember, angles in the second quadrant always have a negative cosine value!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosine Function
Reference Angles
Quadrants

Formulas

cos(165°) = -cos(15°)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

Theorems

Reference Angle Theorem
Cosine Identity for Sum and Difference of Angles

Suitable Grade Level

Grades 10-12