Math Problem Statement

Find the exact value of sin(75°) by using a sum or difference formula.

Solution

To solve sin75\sin 75^\circ using the sum or difference formula, let's break it down step by step:

Formula for sin(A+B)\sin(A + B):

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

Choosing AA and BB:

We can express 7575^\circ as 45+3045^\circ + 30^\circ. Therefore: sin75=sin(45+30)\sin 75^\circ = \sin(45^\circ + 30^\circ)

Substituting into the formula:

sin(45+30)=sin45cos30+cos45sin30\sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ

Using the known values of trigonometric functions:

  • sin45=cos45=22\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2},
  • sin30=12\sin 30^\circ = \frac{1}{2},
  • cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}.

Substitute these values: sin75=(22)(32)+(22)(12)\sin 75^\circ = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)

Simplify:

sin75=64+24\sin 75^\circ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}

Combine the terms: sin75=6+24\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}

Final Answer:

sin75=6+24\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}

Let me know if you'd like further clarification or a breakdown of the steps!


Here are 5 related questions to expand your understanding:

  1. How would you calculate cos75\cos 75^\circ using a similar approach?
  2. Can the same formula be used to find sin15\sin 15^\circ?
  3. What are the exact values of tan75\tan 75^\circ using sin75\sin 75^\circ and cos75\cos 75^\circ?
  4. Why is it useful to memorize exact trigonometric values for common angles?
  5. How does the sum or difference formula apply to radians instead of degrees?

Tip: Memorizing the unit circle values for common angles like 3030^\circ, 4545^\circ, and 6060^\circ will save you time when solving trigonometric problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum and Difference Formulas
Exact Values of Trigonometric Functions

Formulas

sin(A + B) = sin(A)cos(B) + cos(A)sin(B)

Theorems

Sum or Difference Formula for Sine

Suitable Grade Level

Grades 10-12