To find the exact value of cot15∘, we use the identity:
cot(15∘)=sin(15∘)cos(15∘)
We calculate cos15∘ and sin15∘ using the half-angle formulas:
cos15∘=cos(45∘−30∘)=cos45∘cos30∘+sin45∘sin30∘
=(22×23)+(22×21)
=46+42=46+2
Similarly,
sin15∘=sin(45∘−30∘)=sin45∘cos30∘−cos45∘sin30∘
=(22×23)−(22×21)
=46−42=46−2
Now,
cot15∘=sin15∘cos15∘=46−246+2
Canceling the denominator,
cot15∘=6−26+2
Multiply by the conjugate of the denominator:
cot15∘=(6−2)(6+2)(6+2)(6+2)
=(6)2−(2)2(6)2+26⋅2+(2)2
=6−26+212+2
=48+43
=2+3
Thus, the exact value of cot15∘ is:
2+3
Would you like a step-by-step breakdown of any part?
Here are some related problems for practice:
- Find the exact value of tan15∘.
- Prove that cot75∘=2−3.
- Derive the cotangent addition formula.
- Find the exact value of cos75∘.
- Solve cotx=2+3 for x in degrees.
Tip: Rationalizing denominators often helps simplify trigonometric expressions!