Math Problem Statement

Find the exact value of cot15

Solution

To find the exact value of cot15\cot 15^\circ, we use the identity:

cot(15)=cos(15)sin(15)\cot(15^\circ) = \frac{\cos(15^\circ)}{\sin(15^\circ)}

We calculate cos15\cos 15^\circ and sin15\sin 15^\circ using the half-angle formulas:

cos15=cos(4530)=cos45cos30+sin45sin30\cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ

=(22×32)+(22×12)= \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2} \times \frac{1}{2}\right)

=64+24=6+24= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}

Similarly,

sin15=sin(4530)=sin45cos30cos45sin30\sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ

=(22×32)(22×12)= \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2} \times \frac{1}{2}\right)

=6424=624= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}

Now,

cot15=cos15sin15=6+24624\cot 15^\circ = \frac{\cos 15^\circ}{\sin 15^\circ} = \frac{\frac{\sqrt{6} + \sqrt{2}}{4}}{\frac{\sqrt{6} - \sqrt{2}}{4}}

Canceling the denominator,

cot15=6+262\cot 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}

Multiply by the conjugate of the denominator:

cot15=(6+2)(6+2)(62)(6+2)\cot 15^\circ = \frac{(\sqrt{6} + \sqrt{2})(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})}

=(6)2+262+(2)2(6)2(2)2= \frac{(\sqrt{6})^2 + 2\sqrt{6} \cdot \sqrt{2} + (\sqrt{2})^2}{(\sqrt{6})^2 - (\sqrt{2})^2}

=6+212+262= \frac{6 + 2\sqrt{12} + 2}{6 - 2}

=8+434= \frac{8 + 4\sqrt{3}}{4}

=2+3= 2 + \sqrt{3}

Thus, the exact value of cot15\cot 15^\circ is:

2+3\boxed{2 + \sqrt{3}}


Would you like a step-by-step breakdown of any part?

Here are some related problems for practice:

  1. Find the exact value of tan15\tan 15^\circ.
  2. Prove that cot75=23\cot 75^\circ = 2 - \sqrt{3}.
  3. Derive the cotangent addition formula.
  4. Find the exact value of cos75\cos 75^\circ.
  5. Solve cotx=2+3\cot x = 2 + \sqrt{3} for xx in degrees.

Tip: Rationalizing denominators often helps simplify trigonometric expressions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cotangent Function
Angle Difference Identities
Rationalization

Formulas

cot(θ) = cos(θ) / sin(θ)
cos(A - B) = cos A cos B + sin A sin B
sin(A - B) = sin A cos B - cos A sin B

Theorems

Angle Difference Identity
Rationalization Technique

Suitable Grade Level

Grades 10-12