Math Problem Statement

Question number 16

If 8 cot(θ) = 15, find the value of \(\frac{(2 + 3\sin(θ))(1 - \sin(θ))}{(1 + \cos(θ))(2 - 2\cos(θ))}\).

Solution

To solve question 16, we need to evaluate the expression given:

If 8cotθ=15, find the value of (2+3sinθ)(1sinθ)(1+cosθ)(22cosθ).\text{If } 8 \cot \theta = 15, \text{ find the value of } \frac{(2 + 3 \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(2 - 2 \cos \theta)}.

Step 1: Express cotθ\cot \theta in terms of sinθ\sin \theta and cosθ\cos \theta

Given: 8cotθ=15cotθ=1588 \cot \theta = 15 \Rightarrow \cot \theta = \frac{15}{8} We know that: cotθ=cosθsinθcosθsinθ=158\cot \theta = \frac{\cos \theta}{\sin \theta} \Rightarrow \frac{\cos \theta}{\sin \theta} = \frac{15}{8}

Step 2: Use the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

Let sinθ=x\sin \theta = x and cosθ=y\cos \theta = y. Then: yx=158y=158x\frac{y}{x} = \frac{15}{8} \Rightarrow y = \frac{15}{8}x

Substituting into the Pythagorean identity: x2+(158x)2=1x^2 + \left(\frac{15}{8}x\right)^2 = 1 x2+22564x2=1x^2 + \frac{225}{64}x^2 = 1 x2(1+22564)=1x^2\left(1 + \frac{225}{64}\right) = 1 x228964=1x2=64289x=817x^2 \cdot \frac{289}{64} = 1 \Rightarrow x^2 = \frac{64}{289} \Rightarrow x = \frac{8}{17}

So, sinθ=817\sin \theta = \frac{8}{17} and cosθ=1517\cos \theta = \frac{15}{17}

Step 3: Substitute sinθ\sin \theta and cosθ\cos \theta into the expression

Now we substitute these into the given expression: (2+3sinθ)(1sinθ)(1+cosθ)(22cosθ)\frac{(2 + 3 \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(2 - 2 \cos \theta)}

Substituting sinθ=817\sin \theta = \frac{8}{17} and cosθ=1517\cos \theta = \frac{15}{17}: (2+3817)(1817)(1+1517)(221517)\frac{\left(2 + 3 \cdot \frac{8}{17}\right)\left(1 - \frac{8}{17}\right)}{\left(1 + \frac{15}{17}\right)\left(2 - 2 \cdot \frac{15}{17}\right)}

Step 4: Simplify each part

  1. Simplify the numerator: 2+2417=34+2417=58172 + \frac{24}{17} = \frac{34 + 24}{17} = \frac{58}{17} 1817=17817=9171 - \frac{8}{17} = \frac{17 - 8}{17} = \frac{9}{17} So, the numerator is: 5817×917=522289\frac{58}{17} \times \frac{9}{17} = \frac{522}{289}

  2. Simplify the denominator: 1+1517=32171 + \frac{15}{17} = \frac{32}{17} 23017=343017=4172 - \frac{30}{17} = \frac{34 - 30}{17} = \frac{4}{17} So, the denominator is: 3217×417=128289\frac{32}{17} \times \frac{4}{17} = \frac{128}{289}

Step 5: Calculate the final value

Now, divide the numerator by the denominator: 522289128289=522128=26164\frac{\frac{522}{289}}{\frac{128}{289}} = \frac{522}{128} = \frac{261}{64}

So, the final answer is: 26164\frac{261}{64}

Would you like more details or have any questions? Here are five related questions you might find helpful:

  1. How do you solve problems involving trigonometric identities?
  2. What are the key steps in simplifying complex trigonometric expressions?
  3. How does the Pythagorean identity help in solving trigonometric equations?
  4. What other identities are useful in manipulating trigonometric expressions?
  5. How can you check your work when solving trigonometric equations?

Tip: Always ensure to simplify expressions fully before substituting values to avoid unnecessary complexity in calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Pythagorean Identity

Formulas

\(\cot(θ) = \frac{\cos(θ)}{\sin(θ)}\)
\(\sin^2(θ) + \cos^2(θ) = 1\)

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12