Math Problem Statement

Determine the exact value of the following expression.

cos465°

Solution

To determine the exact value of cos465\cos 465^\circ, we can reduce the angle to a standard position within the range of 00^\circ to 360360^\circ by subtracting 360360^\circ from 465465^\circ:

465360=105465^\circ - 360^\circ = 105^\circ

Thus, cos465=cos105\cos 465^\circ = \cos 105^\circ.

Now, we need to determine the value of cos105\cos 105^\circ. Notice that 105105^\circ is in the second quadrant, where the cosine function is negative. Additionally, we can express 105105^\circ as:

105=18075105^\circ = 180^\circ - 75^\circ

Using the identity for cosine in the second quadrant, cos(180θ)=cosθ\cos(180^\circ - \theta) = -\cos \theta, we get:

cos105=cos75\cos 105^\circ = -\cos 75^\circ

The cosine of 7575^\circ can be calculated using the angle sum identity:

cos(75)=cos(45+30)\cos(75^\circ) = \cos(45^\circ + 30^\circ)

Using the formula for the cosine of a sum:

cos(a+b)=cosacosbsinasinb\cos(a + b) = \cos a \cos b - \sin a \sin b

Substitute a=45a = 45^\circ and b=30b = 30^\circ:

cos75=cos45cos30sin45sin30\cos 75^\circ = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ

Using the known values:

cos45=22,cos30=32,sin45=22,sin30=12\cos 45^\circ = \frac{\sqrt{2}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 45^\circ = \frac{\sqrt{2}}{2}, \quad \sin 30^\circ = \frac{1}{2}

Substituting these into the equation:

cos75=(22)(32)(22)(12)\cos 75^\circ = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)

cos75=6424=624\cos 75^\circ = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}

Therefore:

cos105=624\cos 105^\circ = -\frac{\sqrt{6} - \sqrt{2}}{4}

Thus, the exact value of cos465\cos 465^\circ is:

cos465=624\cos 465^\circ = -\frac{\sqrt{6} - \sqrt{2}}{4}

Would you like more details on any step or have any questions?


Here are some related questions:

  1. How do you find exact trigonometric values of other angles outside 00^\circ to 360360^\circ?
  2. What is the sine of 465465^\circ?
  3. How does the cosine function behave in different quadrants?
  4. Can you use the angle difference identity for similar problems?
  5. What are some other trigonometric identities involving cosine?

Tip: Remember that trigonometric functions repeat their values every 360360^\circ, which is called periodicity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Reduction
Cosine Function
Periodicity
Quadrants

Formulas

cos(θ - 360°) = cos θ
cos(180° - θ) = -cos θ
cos(a + b) = cos a cos b - sin a sin b

Theorems

Periodicity of trigonometric functions
Cosine angle-sum identity
Cosine in the second quadrant

Suitable Grade Level

Grades 10-12