Math Problem Statement

Find the exact value of cos(285°).

Solution

To find the exact value of cos(285)\cos(285^\circ), let us proceed step-by-step:

Step 1: Rewrite the angle using a reference angle

The angle 285285^\circ lies in the fourth quadrant. It can be rewritten as: 285=36075285^\circ = 360^\circ - 75^\circ

Here, 7575^\circ is the reference angle.

Step 2: Use the cosine difference formula

The cosine of an angle in the fourth quadrant is positive. Using the cosine difference formula: cos(285)=cos(36075)=cos(75)\cos(285^\circ) = \cos(360^\circ - 75^\circ) = \cos(75^\circ)

Step 3: Expand cos(75)\cos(75^\circ) using the sum formula

cos(75)=cos(45+30)\cos(75^\circ) = \cos(45^\circ + 30^\circ) Using the sum formula for cosine: cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B Substitute A=45A = 45^\circ and B=30B = 30^\circ: cos(75)=cos(45)cos(30)sin(45)sin(30)\cos(75^\circ) = \cos(45^\circ)\cos(30^\circ) - \sin(45^\circ)\sin(30^\circ)

Step 4: Substitute exact trigonometric values

cos(45)=22,cos(30)=32\cos(45^\circ) = \frac{\sqrt{2}}{2}, \quad \cos(30^\circ) = \frac{\sqrt{3}}{2} sin(45)=22,sin(30)=12\sin(45^\circ) = \frac{\sqrt{2}}{2}, \quad \sin(30^\circ) = \frac{1}{2} Substitute these into the equation: cos(75)=(22)(32)(22)(12)\cos(75^\circ) = \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)

Step 5: Simplify the expression

cos(75)=6424\cos(75^\circ) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} Combine terms: cos(75)=624\cos(75^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

Thus: cos(285)=624\cos(285^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

Let me know if you need further details or have questions!


Here are 5 related questions you might consider:

  1. What is the exact value of sin(285)\sin(285^\circ)?
  2. How can you use the unit circle to verify cos(285)\cos(285^\circ)?
  3. What are the key trigonometric identities used in solving problems like this?
  4. How does cos(285)\cos(285^\circ) relate to cos(75)\cos(75^\circ) geometrically?
  5. How do you find the values of sine and cosine for non-standard angles?

Tip: Always identify the quadrant of the angle first to determine the sign of the trigonometric function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Cosine Function
Angle Properties

Formulas

Cosine difference formula: cos(A - B) = cos(A)cos(B) + sin(A)sin(B)
Cosine sum formula: cos(A + B) = cos(A)cos(B) - sin(A)sin(B)

Theorems

Reference angle theorem
Trigonometric function signs in quadrants

Suitable Grade Level

Grades 10-12