Math Problem Statement

Evaluate the limit \( \lim_{\theta \to 0} \frac{1}{\theta} \left( \frac{1}{\sin \theta} - \frac{1}{\tan \theta} \right) \).

Solution

To evaluate the given limit:

limθ01θ(1sinθ1tanθ)\lim_{\theta \to 0} \frac{1}{\theta} \left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta}\right)

First, simplify the expression inside the parentheses:

Step 1: Simplify 1sinθ1tanθ\frac{1}{\sin \theta} - \frac{1}{\tan \theta}

1tanθ=cosθsinθ\frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}

Therefore: 1sinθ1tanθ=1sinθcosθsinθ=1cosθsinθ\frac{1}{\sin \theta} - \frac{1}{\tan \theta} = \frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} = \frac{1 - \cos \theta}{\sin \theta}

Step 2: Substitute this back into the limit

limθ01θ1cosθsinθ\lim_{\theta \to 0} \frac{1}{\theta} \cdot \frac{1 - \cos \theta}{\sin \theta}

This can be rewritten as: limθ01cosθθsinθ\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta \sin \theta}

Step 3: Use approximations for small θ\theta

As θ0\theta \to 0:

  • sinθθ\sin \theta \approx \theta
  • 1cosθθ221 - \cos \theta \approx \frac{\theta^2}{2}

Substitute these approximations: limθ0θ22θθ=limθ0θ2/2θ2=12\lim_{\theta \to 0} \frac{\frac{\theta^2}{2}}{\theta \cdot \theta} = \lim_{\theta \to 0} \frac{\theta^2 / 2}{\theta^2} = \frac{1}{2}

Final Answer:

limθ01θ(1sinθ1tanθ)=12\lim_{\theta \to 0} \frac{1}{\theta} \left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta}\right) = \frac{1}{2}

Would you like further clarification or details on any step?

Here are some related questions to consider:

  1. How do we derive Taylor series for trigonometric functions?
  2. What are other methods to evaluate limits involving trigonometric functions?
  3. Why do small-angle approximations work effectively for limits?
  4. How do we apply L'Hôpital's Rule in evaluating trigonometric limits?
  5. What are some common pitfalls when simplifying trigonometric expressions?

Tip: When handling limits with trigonometric functions as θ0\theta \to 0, using series expansions or approximations can simplify the process and yield results quickly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Identities
Small-angle Approximation

Formulas

lim(θ → 0) (1 - cos(θ)) ≈ θ^2 / 2
lim(θ → 0) sin(θ) ≈ θ
tan(θ) ≈ θ

Theorems

Small-angle approximations
Limit laws

Suitable Grade Level

Grades 11-12