Math Problem Statement

Evaluate \( \lim_{{x \to 0}} \left( \frac{\sin x}{x} \cdot \frac{1}{1 - \cos x} \right) \)

Solution

The expression in the image is:

limx0(sinxx11cosx)\lim_{{x \to 0}} \left( \frac{\sin x}{x} \cdot \frac{1}{1 - \cos x} \right)

To evaluate this limit, let’s break it down into two parts:

  1. The first part: sinxx\frac{\sin x}{x}
  2. The second part: 11cosx\frac{1}{1 - \cos x}

Step 1: Evaluate limx0sinxx\lim_{{x \to 0}} \frac{\sin x}{x}

It is a well-known limit that: limx0sinxx=1\lim_{{x \to 0}} \frac{\sin x}{x} = 1

Step 2: Evaluate limx011cosx\lim_{{x \to 0}} \frac{1}{1 - \cos x}

Using the trigonometric identity 1cosx=2sin2(x2)1 - \cos x = 2 \sin^2 \left( \frac{x}{2} \right), we can rewrite this part as: 11cosx=12sin2(x2)\frac{1}{1 - \cos x} = \frac{1}{2 \sin^2 \left( \frac{x}{2} \right)}

Therefore: limx011cosx=limx012sin2(x2)\lim_{{x \to 0}} \frac{1}{1 - \cos x} = \lim_{{x \to 0}} \frac{1}{2 \sin^2 \left( \frac{x}{2} \right)}

Substitute u=x2u = \frac{x}{2}, so as x0x \to 0, u0u \to 0 as well. This transforms the expression to: limu012sin2u=12limu01sin2u\lim_{{u \to 0}} \frac{1}{2 \sin^2 u} = \frac{1}{2} \cdot \lim_{{u \to 0}} \frac{1}{\sin^2 u}

Since sinuu\sin u \approx u as u0u \to 0, this further becomes: 12limu01u2=12=\frac{1}{2} \cdot \lim_{{u \to 0}} \frac{1}{u^2} = \frac{1}{2} \cdot \infty = \infty

Conclusion

Since the second part diverges to infinity, the overall limit does not exist (it diverges to infinity).

The answer is: limx0(sinxx11cosx)=\lim_{{x \to 0}} \left( \frac{\sin x}{x} \cdot \frac{1}{1 - \cos x} \right) = \infty

Would you like more details or have any questions about the solution?

Related Questions

  1. What are other common trigonometric limits to know?
  2. How can we use L'Hospital's Rule to evaluate similar indeterminate forms?
  3. What happens if we use series expansion to evaluate the given limit?
  4. Can this limit be evaluated in polar coordinates for multivariable functions?
  5. Why is limx0sinxx=1\lim_{{x \to 0}} \frac{\sin x}{x} = 1 important in calculus?

Tip

For trigonometric limits, knowing small-angle approximations like sinxx\sin x \approx x and cosx1x22\cos x \approx 1 - \frac{x^2}{2} near x=0x = 0 can simplify many calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric Limits
Indeterminate Forms

Formulas

\( \lim_{{x \to 0}} \frac{\sin x}{x} = 1 \)
1 - \cos x = 2 \sin^2 \left( \frac{x}{2} \right)

Theorems

Small-angle approximations
Limits involving trigonometric functions

Suitable Grade Level

Grades 11-12