Math Problem Statement

Given the function f(x)=2x+4/x+1. Calculate the following values:

Note: Round the answer to two decimal places as needed. If the output does not exist, enter DNE 

 f(-2)= 

 f(-1)= 

 f(0)= 

 f(1)= 

 f(2)= 

Solution

Let's calculate each value by substituting the respective values of xx into the function f(x)=2x+4x+1f(x) = \frac{2x + 4}{x + 1}.

  1. For f(2)f(-2): f(2)=2(2)+42+1=4+41=01=0f(-2) = \frac{2(-2) + 4}{-2 + 1} = \frac{-4 + 4}{-1} = \frac{0}{-1} = 0 So, f(2)=0f(-2) = 0.

  2. For f(1)f(-1): f(1)=2(1)+41+1=2+40=20f(-1) = \frac{2(-1) + 4}{-1 + 1} = \frac{-2 + 4}{0} = \frac{2}{0} Since division by zero is undefined, f(1)=DNEf(-1) = \text{DNE}.

  3. For f(0)f(0): f(0)=2(0)+40+1=0+41=4f(0) = \frac{2(0) + 4}{0 + 1} = \frac{0 + 4}{1} = 4 So, f(0)=4f(0) = 4.

  4. For f(1)f(1): f(1)=2(1)+41+1=2+42=62=3f(1) = \frac{2(1) + 4}{1 + 1} = \frac{2 + 4}{2} = \frac{6}{2} = 3 So, f(1)=3f(1) = 3.

  5. For f(2)f(2): f(2)=2(2)+42+1=4+43=832.67f(2) = \frac{2(2) + 4}{2 + 1} = \frac{4 + 4}{3} = \frac{8}{3} \approx 2.67 So, f(2)2.67f(2) \approx 2.67 (rounded to two decimal places).

Summary of Results:

  • f(2)=0f(-2) = 0
  • f(1)=DNEf(-1) = \text{DNE}
  • f(0)=4f(0) = 4
  • f(1)=3f(1) = 3
  • f(2)2.67f(2) \approx 2.67

Would you like a detailed explanation of any specific step, or have further questions?

  1. What is the process to evaluate functions at specific points?
  2. How do undefined values affect the function's domain?
  3. Can a function have multiple undefined points?
  4. What types of functions often lead to undefined points?
  5. How do you approximate irrational results to two decimal places?

Tip: Always check the denominator in rational functions to avoid undefined values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Rational Functions
Division by Zero

Formulas

f(x) = (2x + 4) / (x + 1)

Theorems

Undefined values in functions when the denominator equals zero

Suitable Grade Level

Grades 8-10