Math Problem Statement

Given the limits \( \lim_{x \to a} f(x) = 0 \), \( \lim_{x \to a} g(x) = 0 \), \( \lim_{x \to a} h(x) = 1 \), \( \lim_{x \to a} p(x) = \infty \), \( \lim_{x \to a} q(x) = \infty \), which of the following limits are determinate? (a) \( \lim_{x \to a} [f(x) - p(x)] \), (b) \( \lim_{x \to a} [p(x) - q(x)] \), (c) \( \lim_{x \to a} [p(x) + q(x)] \).

Solution

Let's go through each limit provided in the image step by step, using the given information about the limits of functions f(x)f(x), g(x)g(x), h(x)h(x), p(x)p(x), and q(x)q(x):

Given:

  • limxaf(x)=0\lim\limits_{x \to a} f(x) = 0,
  • limxag(x)=0\lim\limits_{x \to a} g(x) = 0,
  • limxah(x)=1\lim\limits_{x \to a} h(x) = 1,
  • limxap(x)=\lim\limits_{x \to a} p(x) = \infty,
  • limxaq(x)=\lim\limits_{x \to a} q(x) = \infty.

(a) limxa[f(x)p(x)]\lim\limits_{x \to a} [f(x) - p(x)]

We know:

  • limxaf(x)=0\lim\limits_{x \to a} f(x) = 0,
  • limxap(x)=\lim\limits_{x \to a} p(x) = \infty.

Therefore: limxa[f(x)p(x)]=0=.\lim\limits_{x \to a} [f(x) - p(x)] = 0 - \infty = -\infty.

Hence, the result is NINF\text{NINF} (negative infinity).

(b) limxa[p(x)q(x)]\lim\limits_{x \to a} [p(x) - q(x)]

We know:

  • limxap(x)=\lim\limits_{x \to a} p(x) = \infty,
  • limxaq(x)=\lim\limits_{x \to a} q(x) = \infty.

Therefore: limxa[p(x)q(x)]=.\lim\limits_{x \to a} [p(x) - q(x)] = \infty - \infty. This is an indeterminate form. Hence, the result is II (indeterminate).

(c) limxa[p(x)+q(x)]\lim\limits_{x \to a} [p(x) + q(x)]

We know:

  • limxap(x)=\lim\limits_{x \to a} p(x) = \infty,
  • limxaq(x)=\lim\limits_{x \to a} q(x) = \infty.

Therefore: limxa[p(x)+q(x)]=+=.\lim\limits_{x \to a} [p(x) + q(x)] = \infty + \infty = \infty.

Hence, the result is INF\text{INF} (positive infinity).

Final Answers:

  • (a) NINF
  • (b) II (indeterminate)
  • (c) INF

Would you like further clarification or details on any step?

Here are some related questions for further exploration:

  1. What are other common indeterminate forms in limits?
  2. How can L'Hopital's Rule be applied to resolve \infty - \infty indeterminate forms?
  3. What are the necessary conditions to apply L'Hopital's Rule?
  4. How do limits behave when functions approach 0/00/0 or /\infty/\infty?
  5. Can the squeeze theorem help evaluate certain limits?

Tip: When encountering indeterminate forms like \infty - \infty, applying algebraic manipulation or L'Hopital's Rule can often help resolve the limit.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Indeterminate Forms
Infinity in Limits

Formulas

\( \lim_{x \to a} f(x) = 0 \)
\( \lim_{x \to a} p(x) = \infty \)
\( \infty - \infty \text{ is indeterminate} \)
\( \infty + \infty = \infty \)

Theorems

Properties of Limits
Indeterminate Form Theorem

Suitable Grade Level

Undergraduate Calculus or High School Advanced Math