Math Problem Statement

Evaluate the integral integrate x ^ 2 * e ^ (- x ^ 4) dx from - ∞ to ∞ * integrate e ^ (- x ^ 4) dx from 0 to ∞

Solution

We need to evaluate the following product of two integrals:

I=(x2ex4dx)×(0ex4dx)I = \left( \int_{-\infty}^{\infty} x^2 e^{-x^4} \,dx \right) \times \left( \int_0^{\infty} e^{-x^4} \,dx \right)

Step 1: Evaluating I1=x2ex4dxI_1 = \int_{-\infty}^{\infty} x^2 e^{-x^4} \,dx

Since the integrand is an even function (x2ex4x^2 e^{-x^4} is symmetric about x=0x = 0), we can express it as:

I1=20x2ex4dxI_1 = 2 \int_0^{\infty} x^2 e^{-x^4} \,dx

Using the substitution:

u=x4du=4x3dxdx=du4x3u = x^4 \Rightarrow du = 4x^3 \,dx \Rightarrow dx = \frac{du}{4x^3}

Rewriting x2x^2 in terms of uu:

x2=u1/2,x3=u3/4x^2 = u^{1/2}, \quad x^3 = u^{3/4}

Thus, the integral transforms into:

I1=20u1/2eudu4u3/4I_1 = 2 \int_0^{\infty} u^{1/2} e^{-u} \cdot \frac{du}{4u^{3/4}}

=120u(1/23/4)eudu= \frac{1}{2} \int_0^{\infty} u^{(1/2 - 3/4)} e^{-u} \,du

=120u1/4eudu= \frac{1}{2} \int_0^{\infty} u^{-1/4} e^{-u} \,du

Recognizing this as the Gamma function Γ(s)=0us1eudu\Gamma(s) = \int_0^{\infty} u^{s-1} e^{-u} \,du, we set s1=14s - 1 = -\frac{1}{4} so that s=34s = \frac{3}{4}:

I1=12Γ(3/4)I_1 = \frac{1}{2} \Gamma(3/4)

Step 2: Evaluating I2=0ex4dxI_2 = \int_0^{\infty} e^{-x^4} \,dx

Using the substitution v=x4dv=4x3dxv = x^4 \Rightarrow dv = 4x^3 dx, we get:

I2=0evdv4v3/4I_2 = \int_0^{\infty} e^{-v} \cdot \frac{dv}{4v^{3/4}}

=140v3/4evdv= \frac{1}{4} \int_0^{\infty} v^{-3/4} e^{-v} \,dv

This is again a Gamma function Γ(s)\Gamma(s) with s1=34s - 1 = -\frac{3}{4} so that s=14s = \frac{1}{4}:

I2=14Γ(1/4)I_2 = \frac{1}{4} \Gamma(1/4)

Step 3: Computing the Product I=I1×I2I = I_1 \times I_2

I=(12Γ(3/4))×(14Γ(1/4))I = \left(\frac{1}{2} \Gamma(3/4) \right) \times \left(\frac{1}{4} \Gamma(1/4) \right)

=18Γ(3/4)Γ(1/4)= \frac{1}{8} \Gamma(3/4) \Gamma(1/4)

Using the Gamma function identity:

Γ(x)Γ(1x)=πsin(πx)\Gamma(x) \Gamma(1-x) = \frac{\pi}{\sin(\pi x)}

for x=14x = \frac{1}{4}, we get:

Γ(1/4)Γ(3/4)=πsin(π/4)=π22=π2\Gamma(1/4) \Gamma(3/4) = \frac{\pi}{\sin(\pi/4)} = \frac{\pi}{\frac{\sqrt{2}}{2}} = \pi \sqrt{2}

Thus,

I=18π2=π28I = \frac{1}{8} \pi \sqrt{2} = \frac{\pi \sqrt{2}}{8}

Final Answer:

π28\frac{\pi \sqrt{2}}{8}

Would you like further clarification on any step?

Related Questions:

  1. How do you evaluate Gaussian integrals of the form exndx\int e^{-x^n} dx?
  2. What is the Gamma function and how is it related to factorials?
  3. How can substitution methods simplify integral evaluations?
  4. What are common techniques for solving improper integrals?
  5. How does the sine-Gamma identity help in computing integrals?

Tip:

The Gamma function generalizes the factorial, and its special values are often useful in evaluating definite integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper Integrals
Gamma Function
Substitution in Integrals
Even Functions

Formulas

Gamma function: Γ(s) = ∫_0^∞ u^(s-1) e^(-u) du
Gamma function identity: Γ(x) Γ(1-x) = π / sin(πx)

Theorems

Gamma function properties
Even function property for integrals

Suitable Grade Level

Grades 11-12, College-level