Math Problem Statement

ans

Evaluate the integral: \( 2 \int_{0}^{\frac{\pi}{3}} \sqrt{2 + 2 \cos \theta} \, d\theta \)

Solution

The given expression is:

20π32+2cosθdθ2 \int_{0}^{\frac{\pi}{3}} \sqrt{2 + 2 \cos \theta} \, d\theta

Step 1: Simplifying the Square Root Expression

We can factor the term inside the square root as follows:

2+2cosθ=2(1+cosθ)=21+cosθ\sqrt{2 + 2 \cos \theta} = \sqrt{2(1 + \cos \theta)} = \sqrt{2} \cdot \sqrt{1 + \cos \theta}

Thus, the integral becomes:

20π321+cosθdθ=220π31+cosθdθ2 \int_{0}^{\frac{\pi}{3}} \sqrt{2} \cdot \sqrt{1 + \cos \theta} \, d\theta = 2\sqrt{2} \int_{0}^{\frac{\pi}{3}} \sqrt{1 + \cos \theta} \, d\theta

Step 2: Using a Trigonometric Identity

We use the identity:

1+cosθ=2cos2(θ2)1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right)

So, the integral becomes:

220π32cos2(θ2)dθ=220π32cos(θ2)dθ2\sqrt{2} \int_{0}^{\frac{\pi}{3}} \sqrt{2 \cos^2\left(\frac{\theta}{2}\right)} \, d\theta = 2\sqrt{2} \int_{0}^{\frac{\pi}{3}} \sqrt{2} \cos\left(\frac{\theta}{2}\right) \, d\theta

This simplifies to:

40π3cos(θ2)dθ4 \int_{0}^{\frac{\pi}{3}} \cos\left(\frac{\theta}{2}\right) \, d\theta

Step 3: Changing the Variable of Integration

Let u=θ2u = \frac{\theta}{2}, so du=12dθdu = \frac{1}{2} d\theta, and the limits change accordingly:

  • When θ=0\theta = 0, u=0u = 0.
  • When θ=π3\theta = \frac{\pi}{3}, u=π6u = \frac{\pi}{6}.

The integral becomes:

420π6cosudu=80π6cosudu4 \cdot 2 \int_{0}^{\frac{\pi}{6}} \cos u \, du = 8 \int_{0}^{\frac{\pi}{6}} \cos u \, du

Step 4: Integrating

The integral of cosu\cos u is sinu\sin u. Thus, we have:

8[sinu]0π6=8(sin(π6)sin(0))=8(12)=48 [\sin u]_{0}^{\frac{\pi}{6}} = 8 \left( \sin\left(\frac{\pi}{6}\right) - \sin(0) \right) = 8 \left(\frac{1}{2}\right) = 4

Final Answer:

4\boxed{4}

If you have any questions or would like more details, feel free to ask!


Here are 5 questions related to this problem:

  1. What other trigonometric identities could be useful in similar integrals?
  2. How can we compute definite integrals involving trigonometric functions more generally?
  3. What are the key steps in handling integrals with square roots involving cosine or sine?
  4. What role does variable substitution play in simplifying integrals?
  5. Can this method be extended to other angles or limits of integration?

Tip: When dealing with integrals involving trigonometric functions, using appropriate identities like double-angle or half-angle formulas can greatly simplify the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Integrals
Integration Techniques
Trigonometric Identities

Formulas

\( \int \sqrt{a + b \cos \theta} \, d\theta \)
Trigonometric identity: \( 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \)

Theorems

Definite Integration
Substitution Theorem
Trigonometric Simplification

Suitable Grade Level

Grades 11-12 (Advanced High School Calculus)