Math Problem Statement

integrate with limited steps

Evaluate the integral \(\int_{\pi/6}^{\pi/2} \frac{\cos^3 x}{\sqrt{\sin x}} \, dx\) and find \(a\) and \(b\) in the form \(\frac{a}{5} - \frac{b}{10\sqrt{2}}\).

Solution

Let me analyze the image and extract the mathematical problem for solving.The problem is to evaluate the integral:

π/6π/2cos3xsinxdx=a5b102,where a=?and b=?.\int_{\pi/6}^{\pi/2} \frac{\cos^3 x}{\sqrt{\sin x}} \, dx = \frac{a}{5} - \frac{b}{10\sqrt{2}}, \quad \text{where } a = \, ? \, \text{and } b = \, ?.

We aim to solve the integral step by step and identify the values of aa and bb.


Step 1: Simplify the integrand

Rewrite cos3x\cos^3 x using cos3x=cosxcos2x\cos^3 x = \cos x \cdot \cos^2 x, and use the trigonometric identity cos2x=1sin2x\cos^2 x = 1 - \sin^2 x: cos3xsinx=cosx(1sin2x)sinx.\frac{\cos^3 x}{\sqrt{\sin x}} = \frac{\cos x (1 - \sin^2 x)}{\sqrt{\sin x}}.

This becomes: cosxsinxcosxsin2xsinx.\frac{\cos x}{\sqrt{\sin x}} - \frac{\cos x \sin^2 x}{\sqrt{\sin x}}.

Simplify each term: cosxsinxsinxcosx.\frac{\cos x}{\sqrt{\sin x}} - \sqrt{\sin x} \cos x.


Step 2: Substitution

Let u=sinxu = \sin x, so that du=cosxdxdu = \cos x \, dx. The limits of integration transform as follows:

  • When x=π/6x = \pi/6, u=sin(π/6)=1/2u = \sin(\pi/6) = 1/2.
  • When x=π/2x = \pi/2, u=sin(π/2)=1u = \sin(\pi/2) = 1.

The integral becomes: 1/211udu1/21udu.\int_{1/2}^{1} \frac{1}{\sqrt{u}} \, du - \int_{1/2}^{1} \sqrt{u} \, du.


Step 3: Solve each integral

  1. For 1udu\int \frac{1}{\sqrt{u}} \, du: 1udu=2u.\int \frac{1}{\sqrt{u}} \, du = 2\sqrt{u}. Evaluating from u=1/2u = 1/2 to u=1u = 1: 21212=2212=22.2\sqrt{1} - 2\sqrt{\frac{1}{2}} = 2 - 2\cdot\frac{1}{\sqrt{2}} = 2 - \sqrt{2}.

  2. For udu\int \sqrt{u} \, du: udu=23u3/2.\int \sqrt{u} \, du = \frac{2}{3} u^{3/2}. Evaluating from u=1/2u = 1/2 to u=1u = 1: 23(13/2)23(12)3/2=2323122=23132.\frac{2}{3}(1^{3/2}) - \frac{2}{3}\left(\frac{1}{2}\right)^{3/2} = \frac{2}{3} - \frac{2}{3} \cdot \frac{1}{2\sqrt{2}} = \frac{2}{3} - \frac{1}{3\sqrt{2}}.


Step 4: Combine results

The integral becomes: (22)(23132).\left(2 - \sqrt{2}\right) - \left(\frac{2}{3} - \frac{1}{3\sqrt{2}}\right).

Simplify: 2223+132.2 - \sqrt{2} - \frac{2}{3} + \frac{1}{3\sqrt{2}}.

Combine terms: (223)(2132)=63232+132=432+132.\left(2 - \frac{2}{3}\right) - \left(\sqrt{2} - \frac{1}{3\sqrt{2}}\right) = \frac{6}{3} - \frac{2}{3} - \sqrt{2} + \frac{1}{3\sqrt{2}} = \frac{4}{3} - \sqrt{2} + \frac{1}{3\sqrt{2}}.


Step 5: Match the form

The result is in the form: a5b102.\frac{a}{5} - \frac{b}{10\sqrt{2}}.

Equating coefficients, we find: a5=43a=203,\frac{a}{5} = \frac{4}{3} \quad \Rightarrow \quad a = \frac{20}{3}, b102=2132b=10(213)=503.\frac{b}{10\sqrt{2}} = \sqrt{2} - \frac{1}{3\sqrt{2}} \quad \Rightarrow \quad b = 10\left(2 - \frac{1}{3}\right) = \frac{50}{3}.


Final Answer:

a=203,b=503.a = \frac{20}{3}, \quad b = \frac{50}{3}.

Let me know if you'd like further details! Here are 5 related questions for practice:

  1. How do trigonometric identities help simplify integrals involving cosnx\cos^n x?
  2. What is the purpose of substitution in solving integrals?
  3. How do you evaluate definite integrals after substitution?
  4. Why is it helpful to express results in specific forms (e.g., a5b102\frac{a}{5} - \frac{b}{10\sqrt{2}})?
  5. What is the geometric interpretation of this integral?

Tip: Always check your substitution limits carefully when performing definite integrals!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integration
Trigonometric Substitution
Simplification

Formulas

\(\cos^2 x = 1 - \sin^2 x\)
Substitution: \(u = \sin x, du = \cos x dx\)
Power Rule for Integration: \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\)

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12