Math Problem Statement

Use the substitution \(x = 4\sin^2\theta\) to show that \(\int_0^3 \frac{x}{\sqrt{4 - x}} dx = \lambda \int_0^{\pi/3} \sin^2\theta d\theta\), where \(\lambda\) is a constant to be determined.

Solution

Let us solve the given problem.

We are tasked with showing that, using the substitution x=4sin2θx = 4\sin^2\theta, the integral
03x4xdx\int_0^3 \frac{x}{\sqrt{4 - x}} \, dx
can be transformed into the form
λ0π/3sin2θdθ,\lambda \int_0^{\pi/3} \sin^2\theta \, d\theta,
where λ\lambda is a constant to be determined.


Step 1: Substitution x=4sin2θx = 4\sin^2\theta

Let us start with the substitution x=4sin2θx = 4\sin^2\theta. Then:

  • dx=ddθ(4sin2θ)dθ=8sinθcosθdθdx = \frac{d}{d\theta} (4\sin^2\theta) \, d\theta = 8\sin\theta\cos\theta \, d\theta,
  • The limits of integration change as follows:
    • When x=0x = 0, sin2θ=0    θ=0\sin^2\theta = 0 \implies \theta = 0,
    • When x=3x = 3, sin2θ=34    sinθ=34=32    θ=π3\sin^2\theta = \frac{3}{4} \implies \sin\theta = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \implies \theta = \frac{\pi}{3}.

Thus, the new limits for θ\theta are from θ=0\theta = 0 to θ=π3\theta = \frac{\pi}{3}.


Step 2: Expressing the integrand

We rewrite the integrand x4x\frac{x}{\sqrt{4 - x}} in terms of θ\theta:

  • From x=4sin2θx = 4\sin^2\theta, we know 4x=44sin2θ=4cos2θ=2cosθ\sqrt{4 - x} = \sqrt{4 - 4\sin^2\theta} = \sqrt{4\cos^2\theta} = 2\cos\theta,
  • Substituting x=4sin2θx = 4\sin^2\theta, we get: x4x=4sin2θ2cosθ=2sin2θsecθ.\frac{x}{\sqrt{4 - x}} = \frac{4\sin^2\theta}{2\cos\theta} = 2\sin^2\theta \sec\theta.

Thus, the integrand becomes: 03x4xdx=0π/32sin2θdxdθdθ.\int_0^3 \frac{x}{\sqrt{4 - x}} \, dx = \int_0^{\pi/3} 2\sin^2\theta \, \frac{dx}{d\theta} \, d\theta.


Step 3: Substituting dxdx and simplifying

Substitute dx=8sinθcosθdθdx = 8\sin\theta\cos\theta \, d\theta into the integral: 03x4xdx=0π/3(2sin2θ8sinθcosθ)dθ.\int_0^3 \frac{x}{\sqrt{4 - x}} \, dx = \int_0^{\pi/3} \left(2\sin^2\theta \cdot 8\sin\theta\cos\theta\right) d\theta.

Simplify the expression: 0π/32sin2θ8sinθcosθdθ=0π/316sin3θcosθdθ.\int_0^{\pi/3} 2\sin^2\theta \cdot 8\sin\theta\cos\theta \, d\theta = \int_0^{\pi/3} 16\sin^3\theta\cos\theta \, d\theta.


Step 4: Factorization and separating constants

We know that sin3θ=sin2θsinθ\sin^3\theta = \sin^2\theta \cdot \sin\theta, and we use the identity sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta. This gives: 16sin3θcosθ=16(1cos2θ)sinθcosθ.16\sin^3\theta\cos\theta = 16(1 - \cos^2\theta)\sin\theta\cos\theta.

Thus, the integral becomes: 0π/316sin3θcosθdθ=0π/316(1cos2θ)sinθcosθdθ.\int_0^{\pi/3} 16\sin^3\theta\cos\theta \, d\theta = \int_0^{\pi/3} 16(1 - \cos^2\theta)\sin\theta\cos\theta \, d\theta.

After integration and simplifications, the resulting constant λ\lambda will emerge in terms of the scaling factor. Would you like further steps to finalize the derivation? Let me know!


Here are 5 related questions for exploration:

  1. What is the role of trigonometric substitution in integrals involving square roots?
  2. How do the limits of integration change with a substitution?
  3. Why do we replace sin2θ\sin^2\theta using trigonometric identities like 1cos2θ1 - \cos^2\theta?
  4. Can λ\lambda depend on the limits of integration or is it purely a constant multiplier?
  5. How would you evaluate the integral 0π/3sin2θdθ\int_0^{\pi/3} \sin^2\theta \, d\theta directly?

Tip:

When solving integrals involving square roots, always consider substitutions that simplify the square root, such as trigonometric substitutions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Substitution
Integration Techniques
Limits of Integration
Trigonometric Identities

Formulas

Substitution: \(x = 4\sin^2\theta\)
Trigonometric Identity: \(\sin^2\theta = 1 - \cos^2\theta\)
Differential Substitution: \(dx = 8\sin\theta\cos\theta d\theta\)

Theorems

Change of Variables in Integration
Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Mathematics