Math Problem Statement

Evaluate the integral \( \int_0^4 \int_0^{\sqrt{16 - x^2}} \int_{\sqrt{x^2 + y^2}}^{\sqrt{32 - x^2 - y^2}} xy \, dz \, dy \, dx \) by changing to spherical coordinates.

Solution

The integral provided needs to be evaluated by transforming the given rectangular coordinates (x,y,z)(x, y, z) into spherical coordinates. Here are the steps for solving this:

Step 1: Recall spherical coordinates definitions

In spherical coordinates: x=ρsinϕcosθ,y=ρsinϕsinθ,z=ρcosϕx = \rho \sin\phi \cos\theta, \quad y = \rho \sin\phi \sin\theta, \quad z = \rho \cos\phi where:

  • ρ\rho is the radial distance,
  • ϕ\phi is the angle between the positive zz-axis and the line connecting the origin to the point (polar angle),
  • θ\theta is the angle between the positive xx-axis and the projection of the point onto the xyxy-plane (azimuthal angle).

The Jacobian for the transformation to spherical coordinates is: dV=ρ2sinϕdρdϕdθdV = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Step 2: Convert bounds

The given bounds describe a region in a quarter of a sphere:

  1. x2+y2+z216x^2 + y^2 + z^2 \leq 16: The radius of the sphere is 4 (ρ4\rho \leq 4).
  2. x0x \geq 0, y0y \geq 0: The integration is limited to the first octant (0θπ20 \leq \theta \leq \frac{\pi}{2}, 0ϕπ20 \leq \phi \leq \frac{\pi}{2}).

Step 3: Rewrite the integrand

The integrand xyxy in spherical coordinates becomes: xy=(ρsinϕcosθ)(ρsinϕsinθ)=ρ2sin2ϕcosθsinθxy = (\rho \sin\phi \cos\theta)(\rho \sin\phi \sin\theta) = \rho^2 \sin^2\phi \cos\theta \sin\theta

Step 4: Set up the integral

The triple integral in spherical coordinates is: 0π/20π/204ρ2sin2ϕcosθsinθρ2sinϕdρdϕdθ\int_0^{\pi/2} \int_0^{\pi/2} \int_0^4 \rho^2 \sin^2\phi \cos\theta \sin\theta \cdot \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta Simplify the integrand: ρ2ρ2=ρ4,sin2ϕsinϕ=sin3ϕ,cosθsinθ\rho^2 \cdot \rho^2 = \rho^4, \quad \sin^2\phi \cdot \sin\phi = \sin^3\phi, \quad \cos\theta \sin\theta So, the integral becomes: 0π/20π/204ρ4sin3ϕcosθsinθdρdϕdθ\int_0^{\pi/2} \int_0^{\pi/2} \int_0^4 \rho^4 \sin^3\phi \cos\theta \sin\theta \, d\rho \, d\phi \, d\theta

Step 5: Solve the integral

  1. Integrate with respect to ρ\rho: 04ρ4dρ=[ρ55]04=455=10245\int_0^4 \rho^4 \, d\rho = \left[\frac{\rho^5}{5}\right]_0^4 = \frac{4^5}{5} = \frac{1024}{5}
  2. Integrate with respect to θ\theta: 0π/2cosθsinθdθ=0π/212sin(2θ)dθ=12[12cos(2θ)]0π/2=1212(1(1))=12\int_0^{\pi/2} \cos\theta \sin\theta \, d\theta = \int_0^{\pi/2} \frac{1}{2} \sin(2\theta) \, d\theta = \frac{1}{2} \left[-\frac{1}{2}\cos(2\theta)\right]_0^{\pi/2} = \frac{1}{2} \cdot \frac{1}{2} \cdot (1 - (-1)) = \frac{1}{2}
  3. Integrate with respect to ϕ\phi: 0π/2sin3ϕdϕ=0π/2sinϕ(1cos2ϕ)dϕ=0π/2sinϕdϕ0π/2sinϕcos2ϕdϕ\int_0^{\pi/2} \sin^3\phi \, d\phi = \int_0^{\pi/2} \sin\phi (1 - \cos^2\phi) \, d\phi = \int_0^{\pi/2} \sin\phi \, d\phi - \int_0^{\pi/2} \sin\phi \cos^2\phi \, d\phi For the first term: 0π/2sinϕdϕ=[cosϕ]0π/2=1\int_0^{\pi/2} \sin\phi \, d\phi = [-\cos\phi]_0^{\pi/2} = 1 For the second term, use substitution u=cosϕu = \cos\phi, du=sinϕdϕdu = -\sin\phi \, d\phi: 0π/2sinϕcos2ϕdϕ=10u2du=01u2du=[u33]01=13\int_0^{\pi/2} \sin\phi \cos^2\phi \, d\phi = -\int_1^0 u^2 \, du = \int_0^1 u^2 \, du = \left[\frac{u^3}{3}\right]_0^1 = \frac{1}{3} So: 0π/2sin3ϕdϕ=113=23\int_0^{\pi/2} \sin^3\phi \, d\phi = 1 - \frac{1}{3} = \frac{2}{3}

Step 6: Combine the results

The value of the integral is: 102451223=102415\frac{1024}{5} \cdot \frac{1}{2} \cdot \frac{2}{3} = \frac{1024}{15}

The final result is: 102415\boxed{\frac{1024}{15}}

Let me know if you want further details or have any questions.
Here are some related questions you might explore:

  1. How are spherical coordinates derived from Cartesian coordinates?
  2. What is the significance of the Jacobian in coordinate transformations?
  3. How would this integral change if integrated over the entire sphere?
  4. How is sin3ϕ\sin^3\phi integrated using substitution?
  5. What are the applications of spherical coordinates in physics?

Tip: Always visualize the bounds of integration to verify the region described by the limits.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Triple Integrals
Spherical Coordinates
Jacobian Transformation

Formulas

x = \rho \sin\phi \cos\theta
y = \rho \sin\phi \sin\theta
z = \rho \cos\phi
Jacobian: dV = \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta

Theorems

Jacobian determinant for coordinate transformation
Trigonometric identities (e.g., \sin^2\phi + \cos^2\phi = 1)

Suitable Grade Level

College Level