Math Problem Statement

Evaluate the following triple integral: ∫₀¹ ∫₀ˣ ∫𝑦ˣ (3x + 5y) dz dy dx.

Solution

To evaluate the given triple integral:

010xyx(3x+5y)dzdydx\int_0^1 \int_0^x \int_y^x (3x + 5y) \, dz \, dy \, dx

we can proceed by evaluating the innermost integral with respect to zz, then yy, and finally xx.

  1. Integrate with respect to zz:

    yx(3x+5y)dz=(3x+5y)yx1dz=(3x+5y)[z]yx\int_y^x (3x + 5y) \, dz = (3x + 5y) \int_y^x 1 \, dz = (3x + 5y) [z]_y^x

    Substituting the limits for zz:

    =(3x+5y)(xy)=3x(xy)+5y(xy)= (3x + 5y) (x - y) = 3x(x - y) + 5y(x - y)

    Expanding this:

    =3x23xy+5yx5y2=3x2+2xy5y2= 3x^2 - 3xy + 5yx - 5y^2 = 3x^2 + 2xy - 5y^2

    So now the integral becomes:

    010x(3x2+2xy5y2)dydx\int_0^1 \int_0^x (3x^2 + 2xy - 5y^2) \, dy \, dx

  2. Integrate with respect to yy:

    We now need to evaluate:

    010x(3x2+2xy5y2)dydx\int_0^1 \int_0^x (3x^2 + 2xy - 5y^2) \, dy \, dx

    Split it term by term:

    =010x3x2dydx+010x2xydydx010x5y2dydx= \int_0^1 \int_0^x 3x^2 \, dy \, dx + \int_0^1 \int_0^x 2xy \, dy \, dx - \int_0^1 \int_0^x 5y^2 \, dy \, dx

    Evaluating each part:

    • For 0x3x2dy=3x2y0x=3x3\int_0^x 3x^2 \, dy = 3x^2 y \Big|_0^x = 3x^3
    • For 0x2xydy=2xy220x=xx2=x3\int_0^x 2xy \, dy = 2x \cdot \frac{y^2}{2} \Big|_0^x = x \cdot x^2 = x^3
    • For 0x5y2dy=5y330x=5x33\int_0^x 5y^2 \, dy = 5 \cdot \frac{y^3}{3} \Big|_0^x = \frac{5x^3}{3}

    Combining these, we have:

    [ \int_0^1 (3x^3 + x^3 - \frac{5x^3}{3}) , dx = \int_0^1 \frac{9x^3}{3} , dx = \int_0^1

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Triple Integration
Multivariable Calculus

Formulas

∫ ∫ ∫ f(x, y, z) dz dy dx
∫ f(z) dz = F(z) + C

Theorems

Fubini's Theorem

Suitable Grade Level

College Level (Calculus II or III)