Math Problem Statement

int 1 ^ 3 int 1/x ^ 1 int 0 ^ sqrt xy xyz dzdydx

Solution

Your integral expression involves multiple nested integrals over different variables. Let me break it down step by step:

1311x0xyxyzdzdydx\int_1^3 \int_1^{\frac{1}{x}} \int_0^{\sqrt{xy}} xyz \, dz \, dy \, dx

This represents a triple integral where:

  • xx ranges from 1 to 3,
  • yy ranges from 1 to 1x\frac{1}{x},
  • zz ranges from 0 to xy\sqrt{xy},
  • The integrand is xyzxyz.

Step-by-step solution:

  1. Inner Integral (with respect to zz): 0xyxyzdz=xy0xyzdz=xy[z22]0xy=xyxy2=(xy)22\int_0^{\sqrt{xy}} xyz \, dz = xy \int_0^{\sqrt{xy}} z \, dz = xy \left[ \frac{z^2}{2} \right]_0^{\sqrt{xy}} = xy \cdot \frac{xy}{2} = \frac{(xy)^2}{2}

  2. Second Integral (with respect to yy): 11x(xy)22dy=x2211xy2dy=x22[y33]11x\int_1^{\frac{1}{x}} \frac{(xy)^2}{2} \, dy = \frac{x^2}{2} \int_1^{\frac{1}{x}} y^2 \, dy = \frac{x^2}{2} \left[ \frac{y^3}{3} \right]_1^{\frac{1}{x}} Now, compute the limits: x22((1x)33133)=x22(13x313)=x26(1x3x3)=x2(1x3)6x3=x2x56x3=16(1xx2)\frac{x^2}{2} \left( \frac{\left( \frac{1}{x} \right)^3}{3} - \frac{1^3}{3} \right) = \frac{x^2}{2} \left( \frac{1}{3x^3} - \frac{1}{3} \right) = \frac{x^2}{6} \left( \frac{1 - x^3}{x^3} \right) = \frac{x^2(1 - x^3)}{6x^3} = \frac{x^2 - x^5}{6x^3} = \frac{1}{6} \left( \frac{1}{x} - x^2 \right)

  3. Outer Integral (with respect to xx): 1316(1xx2)dx=16(131xdx13x2dx)\int_1^3 \frac{1}{6} \left( \frac{1}{x} - x^2 \right) dx = \frac{1}{6} \left( \int_1^3 \frac{1}{x} \, dx - \int_1^3 x^2 \, dx \right) Compute the integrals: 131xdx=ln(3)\int_1^3 \frac{1}{x} \, dx = \ln(3) 13x2dx=[x33]13=27313=913=263\int_1^3 x^2 \, dx = \left[ \frac{x^3}{3} \right]_1^3 = \frac{27}{3} - \frac{1}{3} = 9 - \frac{1}{3} = \frac{26}{3} Therefore: 16(ln(3)263)=ln(3)6139\frac{1}{6} \left( \ln(3) - \frac{26}{3} \right) = \frac{\ln(3)}{6} - \frac{13}{9}

Thus, the final result is:

ln(3)6139\boxed{\frac{\ln(3)}{6} - \frac{13}{9}}

Let me know if you'd like more details or clarifications.


Here are 5 questions that could help extend your understanding:

  1. How would the integral change if the limits of integration were different for yy?
  2. Can you generalize this result for different powers of xx, yy, or zz?
  3. How would you interpret this integral geometrically in 3D space?
  4. What if the integrand was a different function, like exyze^{xyz}?
  5. How does the logarithmic term arise from the integral of 1x\frac{1}{x}?

Tip: Always verify the bounds of your integrals when solving multi-variable calculus problems, as they heavily affect the outcome.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triple Integrals
Multivariable Calculus
Definite Integrals

Formulas

\( \int_1^3 \int_1^{\frac{1}{x}} \int_0^{\sqrt{xy}} xyz \, dz \, dy \, dx \)
\( \int_0^{\sqrt{xy}} xyz \, dz = \frac{(xy)^2}{2} \)
\( \int_1^{\frac{1}{x}} \frac{(xy)^2}{2} \, dy = \frac{1}{6} \left( \frac{1}{x} - x^2 \right) \)
\( \int_1^3 \frac{1}{x} dx = \ln(3) \)

Theorems

Fundamental Theorem of Calculus
Properties of Definite Integrals

Suitable Grade Level

Undergraduate Level - Multivariable Calculus