Math Problem Statement

Evaluate the compositions below by evaluating the inside function and then the outside function: 1. \(\sin\left(\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)\) 2. \(\cos\left(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\right)\)

Solution

Let's solve each composition by evaluating the inside function first, then applying the outside function.

Problem 1

sin(cos1(22))\sin\left(\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)

  1. Evaluate the Inside Function: We start with cos1(22)\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right).

    • The value 22-\frac{\sqrt{2}}{2} corresponds to an angle in the range [0,π][0, \pi] where the cosine of that angle is 22-\frac{\sqrt{2}}{2}.
    • This angle is 3π4\frac{3\pi}{4} (since cos(3π4)=22\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}).
  2. Apply the Outside Function: Now, we find sin(3π4)\sin\left(\frac{3\pi}{4}\right).

    • sin(3π4)=22\sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}.

Thus, the answer to the first problem is: sin(cos1(22))=22\sin\left(\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right) = \frac{\sqrt{2}}{2}

Problem 2

cos(tan1(33))\cos\left(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\right)

  1. Evaluate the Inside Function: We start with tan1(33)\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right).

    • The value 33-\frac{\sqrt{3}}{3} corresponds to an angle whose tangent is 33-\frac{\sqrt{3}}{3}.
    • This angle is π6-\frac{\pi}{6} (since tan(π6)=33\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}).
  2. Apply the Outside Function: Now, we find cos(π6)\cos\left(-\frac{\pi}{6}\right).

    • cos(π6)=cos(π6)=32\cos\left(-\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}.

Thus, the answer to the second problem is: cos(tan1(33))=32\cos\left(\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)\right) = \frac{\sqrt{3}}{2}

Would you like further explanation on these steps or details on trigonometric identities?

Here are 5 related questions to deepen your understanding:

  1. How would you evaluate sin(tan1(13))\sin\left(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)?
  2. What is the process for finding tan(sin1(12))\tan\left(\sin^{-1}\left(\frac{1}{2}\right)\right)?
  3. Can you explain why certain angles are chosen for inverse trigonometric functions?
  4. How does the range of each inverse trigonometric function affect the solutions?
  5. What is the significance of special angles in trigonometric compositions?

Tip: For compositions involving inverse trigonometric functions, always evaluate the inside function first and recall the principal ranges of these functions to find correct values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Inverse Trigonometric Functions
Trigonometric Compositions

Formulas

sin(cos^(-1)(x)) = sin(angle) when cos(angle) = x
cos(tan^(-1)(x)) = cos(angle) when tan(angle) = x

Theorems

Inverse Trigonometric Function Properties
Pythagorean Identity

Suitable Grade Level

Grades 10-12