Math Problem Statement

Find the exact value of the expression, if it exists. (a) cot 2cos−1 4 5 − 1 2 sin−1 1 2 (b) sin 2cot−1 4 3 −sec−1(4)

Solution

Let's solve each expression one by one.

(a) cot(2cos1(45)12sin1(12))\cot \left( 2 \cos^{-1} \left( \frac{4}{5} \right) - \frac{1}{2} \sin^{-1} \left( \frac{1}{2} \right) \right)

Step 1: Evaluate 2cos1(45)2 \cos^{-1} \left( \frac{4}{5} \right)

Let θ=cos1(45)\theta = \cos^{-1} \left( \frac{4}{5} \right), which means cos(θ)=45\cos(\theta) = \frac{4}{5}. Using the Pythagorean identity, we find: sin(θ)=1cos2(θ)=1(45)2=11625=35\sin(\theta) = \sqrt{1 - \cos^2(\theta)} = \sqrt{1 - \left( \frac{4}{5} \right)^2} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5} Thus, sin(θ)=35\sin(\theta) = \frac{3}{5}.

Now, we need 2θ=2cos1(45)2 \theta = 2 \cos^{-1} \left( \frac{4}{5} \right). Using the double-angle identity for cosine: cos(2θ)=2cos2(θ)1=2(45)21=2×16251=32251=725\cos(2\theta) = 2 \cos^2(\theta) - 1 = 2 \left( \frac{4}{5} \right)^2 - 1 = 2 \times \frac{16}{25} - 1 = \frac{32}{25} - 1 = \frac{7}{25} Thus, 2cos1(45)=cos1(725)2 \cos^{-1} \left( \frac{4}{5} \right) = \cos^{-1} \left( \frac{7}{25} \right).

Step 2: Evaluate 12sin1(12)\frac{1}{2} \sin^{-1} \left( \frac{1}{2} \right)

Let ϕ=sin1(12)\phi = \sin^{-1} \left( \frac{1}{2} \right), which means sin(ϕ)=12\sin(\phi) = \frac{1}{2}, so ϕ=π6\phi = \frac{\pi}{6}.

Thus, 12ϕ=12×π6=π12\frac{1}{2} \phi = \frac{1}{2} \times \frac{\pi}{6} = \frac{\pi}{12}.

Step 3: Subtract the values

Now, we subtract the results: 2cos1(45)12sin1(12)=cos1(725)π122 \cos^{-1} \left( \frac{4}{5} \right) - \frac{1}{2} \sin^{-1} \left( \frac{1}{2} \right) = \cos^{-1} \left( \frac{7}{25} \right) - \frac{\pi}{12}

Step 4: Evaluate the cotangent

Now, we compute cot(cos1(725)π12)\cot \left( \cos^{-1} \left( \frac{7}{25} \right) - \frac{\pi}{12} \right), but this expression is complex and does not lend itself easily to a simple closed form without a calculator. Therefore, the exact value cannot be simplified without numerical computation.


(b) sin(2cot1(43)sec1(4))\sin \left( 2 \cot^{-1} \left( \frac{4}{3} \right) - \sec^{-1}(4) \right)

Step 1: Evaluate 2cot1(43)2 \cot^{-1} \left( \frac{4}{3} \right)

Let θ=cot1(43)\theta = \cot^{-1} \left( \frac{4}{3} \right). This means cot(θ)=43\cot(\theta) = \frac{4}{3}, so: tan(θ)=34\tan(\theta) = \frac{3}{4} Now, use the double-angle identity for sine: sin(2θ)=2tan(θ)1+tan2(θ)=2×341+(34)2=641+916=642516=64×1625=96100=0.96\sin(2\theta) = \frac{2 \tan(\theta)}{1 + \tan^2(\theta)} = \frac{2 \times \frac{3}{4}}{1 + \left( \frac{3}{4} \right)^2} = \frac{\frac{6}{4}}{1 + \frac{9}{16}} = \frac{\frac{6}{4}}{\frac{25}{16}} = \frac{6}{4} \times \frac{16}{25} = \frac{96}{100} = 0.96

Thus, 2cot1(43)=sin1(0.96)2 \cot^{-1} \left( \frac{4}{3} \right) = \sin^{-1}(0.96).

Step 2: Evaluate sec1(4)\sec^{-1}(4)

Let ϕ=sec1(4)\phi = \sec^{-1}(4), which means sec(ϕ)=4\sec(\phi) = 4, so: cos(ϕ)=14\cos(\phi) = \frac{1}{4}

Step 3: Subtract the values

Now, we subtract: 2cot1(43)sec1(4)2 \cot^{-1} \left( \frac{4}{3} \right) - \sec^{-1}(4) This expression also involves complex trigonometric values and doesn't simplify into a closed form easily.

Conclusion:

Both expressions (a) and (b) involve complex values that are best evaluated using a calculator. Therefore, the exact values cannot be simplified neatly in closed form.

Let me know if you'd like a further explanation, or have any specific questions.


Here are 5 related questions:

  1. How do you evaluate inverse trigonometric functions?
  2. What are some common identities for double angles?
  3. What is the process to simplify expressions involving inverse cotangent?
  4. How do you interpret the secant and its inverse in trigonometry?
  5. How does one calculate trigonometric expressions without a calculator?

Tip: Always try to simplify expressions using identities like double-angle formulas or inverse trig rules before resorting to calculators.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Inverse Trigonometric Functions
Double-Angle Identities
Pythagorean Identity

Formulas

cos(2θ) = 2cos^2(θ) − 1
sin(2θ) = 2tan(θ)/(1 + tan^2(θ))
cot(θ) = 1/tan(θ)
sec(θ) = 1/cos(θ)

Theorems

Double-Angle Theorem for Cosine
Double-Angle Theorem for Sine
Inverse Trigonometric Function Definitions

Suitable Grade Level

Grades 11-12 (Precalculus/Calculus)