Math Problem Statement

Find the values of the inverse trig functions: a. \( \tan^{-1} \left( -\frac{\sqrt{3}}{3} \right) \), b. \( \sin \left( \cos^{-1} \frac{3}{8} \right) \)

Solution

Let's solve each of these problems one by one.

Problem (a)

Evaluate: tan1(33)\text{tan}^{-1} \left( -\frac{\sqrt{3}}{3} \right)

The expression tan1(x)\text{tan}^{-1}(x) represents the angle θ\theta such that tan(θ)=x\tan(\theta) = x and θ\theta lies within the range π2θπ2-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}.

To find θ\theta such that: tan(θ)=33\tan(\theta) = -\frac{\sqrt{3}}{3}

We recognize that: tan(π6)=33\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}

Thus: tan1(33)=π6\text{tan}^{-1} \left( -\frac{\sqrt{3}}{3} \right) = -\frac{\pi}{6}

Problem (b)

Evaluate: sin(cos138)\sin \left( \cos^{-1} \frac{3}{8} \right)

Let θ=cos138\theta = \cos^{-1} \frac{3}{8}. This means: cos(θ)=38\cos(\theta) = \frac{3}{8}

We need to find sin(θ)\sin(\theta). Using the Pythagorean identity: sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1

Substitute cos(θ)=38\cos(\theta) = \frac{3}{8}: sin2(θ)+(38)2=1\sin^2(\theta) + \left(\frac{3}{8}\right)^2 = 1 sin2(θ)+964=1\sin^2(\theta) + \frac{9}{64} = 1 sin2(θ)=1964\sin^2(\theta) = 1 - \frac{9}{64} sin2(θ)=64964=5564\sin^2(\theta) = \frac{64 - 9}{64} = \frac{55}{64} sin(θ)=5564=558\sin(\theta) = \sqrt{\frac{55}{64}} = \frac{\sqrt{55}}{8}

Therefore: sin(cos138)=558\sin \left( \cos^{-1} \frac{3}{8} \right) = \frac{\sqrt{55}}{8}


Would you like further details or explanations on these solutions?

Here are some related questions for further practice:

  1. What is sin1(12)\sin^{-1} \left( \frac{1}{2} \right)?
  2. How would you find cos(tan1x)\cos(\tan^{-1} x) for an arbitrary value of xx?
  3. What is the value of tan(cos145)\tan \left( \cos^{-1} \frac{4}{5} \right)?
  4. How does the Pythagorean identity apply to inverse trigonometric functions?
  5. How do you determine the range of each inverse trigonometric function?

Tip: Remember that each inverse trigonometric function has a specific range for its principal values. This can help in determining the correct angle when solving inverse trigonometric expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inverse Trigonometric Functions
Trigonometric Identities
Pythagorean Identity

Formulas

tan^{-1}(x) = \theta \Rightarrow \tan(\theta) = x
\sin^2(\theta) + \cos^2(\theta) = 1

Theorems

Pythagorean Identity
Inverse Trigonometric Function Properties

Suitable Grade Level

Grades 10-12