Math Problem Statement

Evaluate the surface integral. S (x^(2)z + y^(2)z) dS, S is the hemisphere x2 + y2 + z2 = 9, z ≥ 0

Solution

We want to evaluate the surface integral:
S(x2z+y2z)dS\iint_S (x^2z + y^2z) \, dS where SS is the hemisphere x2+y2+z2=9x^2 + y^2 + z^2 = 9 for z0z \geq 0.


Step 1: Surface parameterization

The hemisphere can be parameterized in spherical coordinates:
x=3sinϕcosθ,y=3sinϕsinθ,z=3cosϕx = 3\sin\phi\cos\theta, \quad y = 3\sin\phi\sin\theta, \quad z = 3\cos\phi where ϕ\phi is the polar angle (0ϕπ/20 \leq \phi \leq \pi/2) and θ\theta is the azimuthal angle (0θ2π0 \leq \theta \leq 2\pi).

The surface element in spherical coordinates is: dS=R2sinϕdϕdθ=9sinϕdϕdθdS = R^2 \sin\phi \, d\phi \, d\theta = 9\sin\phi \, d\phi \, d\theta


Step 2: Express the integrand in terms of ϕ\phi and θ\theta

Substitute xx, yy, and zz into x2z+y2zx^2z + y^2z: x2=(3sinϕcosθ)2=9sin2ϕcos2θ,y2=(3sinϕsinθ)2=9sin2ϕsin2θx^2 = (3\sin\phi\cos\theta)^2 = 9\sin^2\phi\cos^2\theta, \quad y^2 = (3\sin\phi\sin\theta)^2 = 9\sin^2\phi\sin^2\theta x2+y2=9sin2ϕ(cos2θ+sin2θ)=9sin2ϕx^2 + y^2 = 9\sin^2\phi(\cos^2\theta + \sin^2\theta) = 9\sin^2\phi x2z+y2z=z(x2+y2)=3cosϕ9sin2ϕ=27sin2ϕcosϕx^2z + y^2z = z(x^2 + y^2) = 3\cos\phi \cdot 9\sin^2\phi = 27\sin^2\phi\cos\phi


Step 3: Set up the integral

The surface integral becomes: S(x2z+y2z)dS=02π0π/227sin2ϕcosϕ9sinϕdϕdθ\iint_S (x^2z + y^2z) \, dS = \int_0^{2\pi} \int_0^{\pi/2} 27\sin^2\phi\cos\phi \cdot 9\sin\phi \, d\phi \, d\theta =24302πdθ0π/2sin3ϕcosϕdϕ= 243 \int_0^{2\pi} \, d\theta \int_0^{\pi/2} \sin^3\phi\cos\phi \, d\phi


Step 4: Evaluate the integrals

  1. Evaluate 02πdθ\int_0^{2\pi} d\theta: 02πdθ=2π\int_0^{2\pi} d\theta = 2\pi

  2. Simplify 0π/2sin3ϕcosϕdϕ\int_0^{\pi/2} \sin^3\phi\cos\phi \, d\phi:
    Let u=sinϕu = \sin\phi, so du=cosϕdϕdu = \cos\phi \, d\phi and when ϕ=0,u=0\phi = 0, u = 0, and when ϕ=π/2,u=1\phi = \pi/2, u = 1.
    0π/2sin3ϕcosϕdϕ=01u3du=[u44]01=14\int_0^{\pi/2} \sin^3\phi\cos\phi \, d\phi = \int_0^1 u^3 \, du = \left[\frac{u^4}{4}\right]_0^1 = \frac{1}{4}

  3. Combine the results: S(x2z+y2z)dS=2432π14=243π2\iint_S (x^2z + y^2z) \, dS = 243 \cdot 2\pi \cdot \frac{1}{4} = \frac{243\pi}{2}


Final Answer:

243π2\boxed{\frac{243\pi}{2}}

Would you like details or clarification on any step?


Related Questions:

  1. How do you calculate surface integrals for other surfaces like cylinders or cones?
  2. What are the differences between surface integrals and line integrals?
  3. How does the divergence theorem relate to surface integrals?
  4. Can surface integrals be solved using Cartesian coordinates instead of spherical?
  5. How is the Jacobian derived for different parameterizations?

Tip:

When solving integrals over spheres or hemispheres, spherical coordinates often simplify the computation by leveraging symmetry.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Surface Integrals
Spherical Coordinates
Parameterization
Integral Calculus

Formulas

Surface element in spherical coordinates: dS = R^2 sin(φ) dφ dθ
Integrand substitution: x^2z + y^2z = 27sin^2(φ)cos(φ)
Integral simplification: ∫sin^3(φ)cos(φ)dφ using substitution u = sin(φ)

Theorems

Spherical Coordinate Transformations
Integral Substitution Method

Suitable Grade Level

Undergraduate Mathematics