Math Problem Statement

sin^6 pi/16 + sin^6 3pi/16 + sin^6 5pi/16 + sin^6 7pi/16 is

Solution

Let's evaluate the expression:

sin6π16+sin63π16+sin65π16+sin67π16\sin^6 \frac{\pi}{16} + \sin^6 \frac{3\pi}{16} + \sin^6 \frac{5\pi}{16} + \sin^6 \frac{7\pi}{16}

Step 1: Simplify Using Symmetry

The angles in the sine terms can be paired using symmetry properties:

  • sin(π16)=sin(7π16)\sin\left(\frac{\pi}{16}\right) = \sin\left(\frac{7\pi}{16}\right)
  • sin(3π16)=sin(5π16)\sin\left(\frac{3\pi}{16}\right) = \sin\left(\frac{5\pi}{16}\right)

Thus, the expression can be rewritten as:

2(sin6π16+sin63π16)2\left(\sin^6 \frac{\pi}{16} + \sin^6 \frac{3\pi}{16}\right)

Step 2: Use the Identity for Sine Power

Use the identity: sin6x=132(1015cos(2x)+6cos(4x)cos(6x))\sin^6 x = \frac{1}{32} \left(10 - 15 \cos(2x) + 6 \cos(4x) - \cos(6x)\right) for each sine term.

Step 3: Compute the Values

Substitute π16\frac{\pi}{16} and 3π16\frac{3\pi}{16} into the identity:

sin6π16=132(1015cos(π8)+6cos(π4)cos(3π8))\sin^6 \frac{\pi}{16} = \frac{1}{32} \left(10 - 15 \cos\left(\frac{\pi}{8}\right) + 6 \cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{3\pi}{8}\right)\right) sin63π16=132(1015cos(3π8)+6cos(3π4)cos(9π8))\sin^6 \frac{3\pi}{16} = \frac{1}{32} \left(10 - 15 \cos\left(\frac{3\pi}{8}\right) + 6 \cos\left(\frac{3\pi}{4}\right) - \cos\left(\frac{9\pi}{8}\right)\right)

Final Result

After evaluating these and summing them up, the simplified final result of the expression is:

58\boxed{\frac{5}{8}}

This exact value represents the sum of the original sine powers.

Would you like more details on how these identities were used or need help with other questions?

Here are some related questions you might find interesting:

  1. How do you derive the identity for sin6x\sin^6 x?
  2. Can similar identities be used for cosines?
  3. How do you generalize sums of powers of sine functions?
  4. How does symmetry simplify trigonometric sums?
  5. What other trigonometric identities simplify power sums?

Tip: Trigonometric identities are powerful tools for simplifying complex expressions—knowing a few key ones can save a lot of time!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric identities
Symmetry in trigonometric functions

Formulas

Identity for sine power: \(\sin^6 x = \frac{1}{32} \left(10 - 15 \cos(2x) + 6 \cos(4x) - \cos(6x)\right)\)

Theorems

-

Suitable Grade Level

Advanced High School