Math Problem Statement

Evaluate (f/g) (x) if f (x)= √x-2 and g (x) = 1/x

Solution

To evaluate (fg)(x)\left(\frac{f}{g}\right)(x) given that f(x)=x2f(x) = \sqrt{x-2} and g(x)=1xg(x) = \frac{1}{x}, follow these steps:

Step 1: Write the expression for (fg)(x)\left(\frac{f}{g}\right)(x)

(fg)(x)=f(x)g(x)\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}

Step 2: Substitute the given functions f(x)f(x) and g(x)g(x) into the expression

(fg)(x)=x21x\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x-2}}{\frac{1}{x}}

Step 3: Simplify the expression

Dividing by 1x\frac{1}{x} is equivalent to multiplying by xx: (fg)(x)=x2×x\left(\frac{f}{g}\right)(x) = \sqrt{x-2} \times x

Step 4: Write the final answer

(fg)(x)=xx2\left(\frac{f}{g}\right)(x) = x\sqrt{x-2}

This is the expression for (fg)(x)\left(\frac{f}{g}\right)(x).

Would you like more details or have any questions? Here are some related problems you might find interesting:

  1. Find (fgh)(x)\left(\frac{f \cdot g}{h}\right)(x) if f(x)=x2f(x) = \sqrt{x-2}, g(x)=1xg(x) = \frac{1}{x}, and h(x)=x2h(x) = x^2.
  2. Evaluate (fg)(x)\left(f \cdot g\right)(x) for the same functions f(x)f(x) and g(x)g(x).
  3. Determine the domain of (fg)(x)\left(\frac{f}{g}\right)(x).
  4. Simplify (fh)(x)\left(\frac{f}{h}\right)(x) if h(x)=x+2h(x) = x+2 and f(x)=x2f(x) = \sqrt{x-2}.
  5. Find the inverse of the function f(x)=xx2f(x) = x\sqrt{x-2}.

Tip: When dividing by a function, always ensure that the denominator is not zero to avoid undefined values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Rational Functions
Square Roots
Domain and Range

Formulas

-

Theorems

-

Suitable Grade Level

Grades 11-12