Math Problem Statement
Evaluate the following limit. ModifyingBelow lim With left parenthesis x comma y comma z right parenthesis right arrow left parenthesis 4 comma 1 comma 1 right parenthesisStartFraction z minus StartRoot zy EndRoot minus StartRoot zx EndRoot plus StartRoot xy EndRoot Over z minus StartRoot zy EndRoot plus StartRoot zx EndRoot minus StartRoot xy EndRoot EndFraction Question content area bottom Part 1 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. ModifyingBelow lim With left parenthesis x comma y comma z right parenthesis right arrow left parenthesis 4 comma 1 comma 1 right parenthesisStartFraction z minus StartRoot zy EndRoot minus StartRoot zx EndRoot plus StartRoot xy EndRoot Over z minus StartRoot zy EndRoot plus StartRoot zx EndRoot minus StartRoot xy EndRoot EndFraction equals enter your response here (Type an exact answer in simplified form.) B. The limit does not exist.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Multivariable Calculus
Limits
Indeterminate Forms
L'Hopital's Rule
Formulas
Limit formula: lim(x, y, z) → (4, 1, 1) [z - √(zy) - √(zx) + √(xy)] / [z - √(zy) + √(zx) - √(xy)]
Indeterminate form: 0/0
L'Hopital's Rule: lim f(x)/g(x) = lim f'(x)/g'(x) for indeterminate forms
Theorems
L'Hopital's Rule
Limit Laws
Square Root Simplification
Suitable Grade Level
Undergraduate - Calculus I or II
Related Recommendation
Evaluate Multivariable Limit Using L'Hopital's Rule: lim (x, y, z) → (1, 1, 4)
Limit Calculation as x Approaches 3 from the Right for Square Root Expressions
Evaluate Limit using L'Hopital's Rule: sqrt(2 - x) / (3 - sqrt(4x + 5)) as x approaches 1
Limit Evaluation Using L'Hôpital's Rule: lim (2 - sqrt(s^2 + 3)) / (1 - s^2)
Limit Calculation Involving Square Roots Using L'Hopital's Rule