Math Problem Statement

Enter the exact value, do not round to a decimal.

Evaluate \( \int_C y \, dx + z \, dy + x \, dz \), where \( C \) is given by the equations \( x = \sqrt{t} \), \( y = t \), \( z = t^2 \), \( 1 \leq t \leq 4 \).

Solution

To evaluate the line integral Cydx+zdy+xdz\int_C y \, dx + z \, dy + x \, dz, we need to parameterize the path CC given by the equations x=tx = \sqrt{t}, y=ty = t, and z=t2z = t^2 for 1t41 \leq t \leq 4.

Step 1: Parameterize dxdx, dydy, and dzdz

Given: x=t,y=t,z=t2x = \sqrt{t}, \quad y = t, \quad z = t^2 we find the differentials dxdx, dydy, and dzdz in terms of dtdt:

  1. dx=ddt(t)dt=12tdtdx = \frac{d}{dt}(\sqrt{t}) \, dt = \frac{1}{2\sqrt{t}} \, dt
  2. dy=ddt(t)dt=1dtdy = \frac{d}{dt}(t) \, dt = 1 \, dt
  3. dz=ddt(t2)dt=2tdtdz = \frac{d}{dt}(t^2) \, dt = 2t \, dt

Step 2: Substitute into the Integral

Now, substitute y=ty = t, z=t2z = t^2, and x=tx = \sqrt{t} along with the differentials into the integral: Cydx+zdy+xdz=14(t12t+t21+t2t)dt\int_C y \, dx + z \, dy + x \, dz = \int_{1}^{4} \left( t \cdot \frac{1}{2\sqrt{t}} + t^2 \cdot 1 + \sqrt{t} \cdot 2t \right) \, dt

Step 3: Simplify the Integrand

Breaking down each term:

  1. ydx=t12t=t2t=t2y \, dx = t \cdot \frac{1}{2\sqrt{t}} = \frac{t}{2\sqrt{t}} = \frac{\sqrt{t}}{2}
  2. zdy=t21=t2z \, dy = t^2 \cdot 1 = t^2
  3. xdz=t2t=2ttx \, dz = \sqrt{t} \cdot 2t = 2t\sqrt{t}

Thus, the integrand becomes: t2+t2+2tt\frac{\sqrt{t}}{2} + t^2 + 2t\sqrt{t}

Step 4: Evaluate the Integral

Now we evaluate: 14(t2+t2+2tt)dt\int_{1}^{4} \left( \frac{\sqrt{t}}{2} + t^2 + 2t\sqrt{t} \right) \, dt

Each term can be integrated individually:

  1. For 14t2dt=14t1/22dt\int_{1}^{4} \frac{\sqrt{t}}{2} \, dt = \int_{1}^{4} \frac{t^{1/2}}{2} \, dt: =12t3/23/214=13t3/214=13(43/213/2)=13(81)=73= \frac{1}{2} \cdot \frac{t^{3/2}}{3/2} \Big|_{1}^{4} = \frac{1}{3} t^{3/2} \Big|_{1}^{4} = \frac{1}{3} \left(4^{3/2} - 1^{3/2}\right) = \frac{1}{3} (8 - 1) = \frac{7}{3}

  2. For 14t2dt\int_{1}^{4} t^2 \, dt: =t3314=433133=6413=633=21= \frac{t^3}{3} \Big|_{1}^{4} = \frac{4^3}{3} - \frac{1^3}{3} = \frac{64 - 1}{3} = \frac{63}{3} = 21

  3. For 142ttdt=142t3/2dt\int_{1}^{4} 2t\sqrt{t} \, dt = \int_{1}^{4} 2t^{3/2} \, dt: =2t5/25/214=45t5/214=45(45/215/2)=45(321)=4531=1245= 2 \cdot \frac{t^{5/2}}{5/2} \Big|_{1}^{4} = \frac{4}{5} t^{5/2} \Big|_{1}^{4} = \frac{4}{5} \left(4^{5/2} - 1^{5/2}\right) = \frac{4}{5} (32 - 1) = \frac{4}{5} \cdot 31 = \frac{124}{5}

Step 5: Combine Results

Now, we add up each evaluated term: 73+21+1245\frac{7}{3} + 21 + \frac{124}{5}

To add these, we find a common denominator, which is 15:

  1. 73=3515\frac{7}{3} = \frac{35}{15}
  2. 21=3151521 = \frac{315}{15}
  3. 1245=37215\frac{124}{5} = \frac{372}{15}

Thus, 35+315+37215=72215\frac{35 + 315 + 372}{15} = \frac{722}{15}

Final Answer

Cydx+zdy+xdz=72215\int_C y \, dx + z \, dy + x \, dz = \frac{722}{15}

Would you like further details, or do you have any questions?

Related Questions:

  1. How would the result change if CC had different parameter bounds?
  2. How can this line integral be interpreted geometrically?
  3. What is the significance of each term ydxy \, dx, zdyz \, dy, and xdzx \, dz in the context of the integral?
  4. How would we approach this if xx, yy, and zz were different functions of tt?
  5. What are some alternative methods for evaluating line integrals?

Tip:

When calculating line integrals, ensure each part of the parameterization matches with the differential terms to avoid miscalculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Line Integral
Vector Calculus
Parameterization

Formulas

\( \int_C P \, dx + Q \, dy + R \, dz \)
Parameterization formulas for \( dx \), \( dy \), \( dz \) in terms of \( dt \)

Theorems

Line integral in three dimensions

Suitable Grade Level

College Level - Calculus II or III