Math Problem Statement

Enter the exact value, do not round to a decimal.

Evaluate \( \int_C y \, dx + z \, dy + x \, dz \), where \( C \) is given by the equations \( x = \sqrt{t} \), \( y = t \), \( z = t^2 \), \( 1 \leq t \leq 4 \).

Solution

To evaluate the line integral

Cydx+zdy+xdz\int_C y \, dx + z \, dy + x \, dz

where the path CC is parametrized by the equations:

  • x=tx = \sqrt{t}
  • y=ty = t
  • z=t2z = t^2

with tt ranging from 1 to 4, we can proceed as follows:

  1. Find dxdx, dydy, and dzdz in terms of dtdt:

    • Given x=tx = \sqrt{t}, then: dx=12tdtdx = \frac{1}{2\sqrt{t}} \, dt
    • Given y=ty = t, then: dy=1dtdy = 1 \, dt
    • Given z=t2z = t^2, then: dz=2tdtdz = 2t \, dt
  2. Substitute into the integral: Substitute y=ty = t, z=t2z = t^2, x=tx = \sqrt{t}, and the expressions for dxdx, dydy, and dzdz in terms of dtdt: Cydx+zdy+xdz=14(t12t+t21+t2t)dt\int_C y \, dx + z \, dy + x \, dz = \int_{1}^{4} \left( t \cdot \frac{1}{2\sqrt{t}} + t^2 \cdot 1 + \sqrt{t} \cdot 2t \right) dt

  3. Simplify each term:

    • The first term t12t=t2t=t2t \cdot \frac{1}{2\sqrt{t}} = \frac{t}{2\sqrt{t}} = \frac{\sqrt{t}}{2}
    • The second term is t2t^2
    • The third term is t2t=2tt\sqrt{t} \cdot 2t = 2t\sqrt{t}

    Thus, the integral becomes: 14(t2+t2+2tt)dt\int_{1}^{4} \left( \frac{\sqrt{t}}{2} + t^2 + 2t\sqrt{t} \right) dt

  4. Evaluate each component separately:

    • For 14t2dt\int_{1}^{4} \frac{\sqrt{t}}{2} \, dt: Substitute u=t1/2t=u2dt=2uduu = t^{1/2} \Rightarrow t = u^2 \Rightarrow dt = 2u \, du: [ \int \frac{\sqrt{t}}{2} , dt = \int u , du = \frac{u^2}{2} + C

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Line Integrals
Parametric Equations

Formulas

dx = \frac{1}{2\sqrt{t}} \, dt
dy = 1 \, dt
dz = 2t \, dt

Theorems

Line Integral

Suitable Grade Level

Grades 11-12 or introductory college calculus