Math Problem Statement

Problem #2: Evaluate the following limits (a) lim_{h -> 0} [(sqrt(67 - 3(x + h)) - sqrt(67 - 3x)) / h] (b) lim_{x -> 0^-} [(x^2 - 7x) / x] (c) lim_{x -> 0^+} [(x^2 - 4x) / x]

Solution

Let's analyze and solve the given limits step-by-step.

Problem #2: Evaluate the following limits

(a) limh0673(x+h)673xh\lim\limits_{h \to 0} \frac{\sqrt{67 - 3(x+h)} - \sqrt{67 - 3x}}{h}

  1. Rationalize the numerator: Multiply both numerator and denominator by the conjugate, 673(x+h)+673x\sqrt{67 - 3(x+h)} + \sqrt{67 - 3x}, to eliminate the square roots.

    limh0(673(x+h)673x)(673(x+h)+673x)h(673(x+h)+673x)\lim_{h \to 0} \frac{ \left(\sqrt{67 - 3(x+h)} - \sqrt{67 - 3x} \right) \left( \sqrt{67 - 3(x+h)} + \sqrt{67 - 3x} \right) }{ h \left( \sqrt{67 - 3(x+h)} + \sqrt{67 - 3x} \right)}

    Simplifying the numerator using the identity (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2:

    =limh0(673(x+h))(673x)h(673(x+h)+673x)= \lim_{h \to 0} \frac{ (67 - 3(x+h)) - (67 - 3x) }{ h \left( \sqrt{67 - 3(x+h)} + \sqrt{67 - 3x} \right) }

    This reduces to:

    limh03hh(673(x+h)+673x)\lim_{h \to 0} \frac{ -3h }{ h \left( \sqrt{67 - 3(x+h)} + \sqrt{67 - 3x} \right) }

  2. Simplify: Cancel hh in the numerator and denominator (assuming h0h \neq 0):

    =limh03673(x+h)+673x= \lim_{h \to 0} \frac{-3}{ \sqrt{67 - 3(x+h)} + \sqrt{67 - 3x}}

  3. Substitute h=0h = 0:

    =32673x= \frac{-3}{2\sqrt{67 - 3x}}

So, the limit is:

limh0673(x+h)673xh=32673x\lim_{h \to 0} \frac{\sqrt{67 - 3(x+h)} - \sqrt{67 - 3x}}{h} = \frac{-3}{2\sqrt{67 - 3x}}

(b) limx0x27xx\lim\limits_{x \to 0^-} \frac{x^2 - 7x}{x}

Simplify the expression:

x27xx=x7\frac{x^2 - 7x}{x} = x - 7

Now, take the limit as x0x \to 0^-:

limx0(x7)=7\lim_{x \to 0^-} (x - 7) = -7

So, the limit is:

limx0x27xx=7\lim_{x \to 0^-} \frac{x^2 - 7x}{x} = -7

(c) limx0+x24xx\lim\limits_{x \to 0^+} \frac{x^2 - 4x}{x}

Simplify the expression:

x24xx=x4\frac{x^2 - 4x}{x} = x - 4

Now, take the limit as x0+x \to 0^+:

limx0+(x4)=4\lim_{x \to 0^+} (x - 4) = -4

So, the limit is:

limx0+x24xx=4\lim_{x \to 0^+} \frac{x^2 - 4x}{x} = -4


Would you like a more detailed breakdown of any specific part? Here are five questions related to this problem:

  1. Why is rationalizing the numerator helpful in evaluating the limit in part (a)?
  2. What happens if you substitute h=0h = 0 directly in part (a)?
  3. Can you explain why the expression simplifies to x7x - 7 in part (b)?
  4. How does the concept of one-sided limits apply in parts (b) and (c)?
  5. What is the significance of approaching xx from the left and right separately?

Tip: Always simplify the expression before taking the limit to see if you can resolve indeterminate forms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Rationalization
One-Sided Limits
Indeterminate Forms

Formulas

lim_{h -> 0} [(f(x+h) - f(x)) / h] for derivative definition
(a^2 - b^2) = (a - b)(a + b) to rationalize square roots

Theorems

Limit Laws
Rationalization Technique
One-Sided Limit Theorems

Suitable Grade Level

Grades 11-12 or College-level Calculus