Math Problem Statement

求极限: \( \lim_{x \to 0} \frac{\left(1 + \frac{1}{2} x^2 - \sqrt{1 + x^2}\right) \cos(x^2)}{\cos x - e^{-\frac{x^2}{2}}} \)

Solution

The problem involves evaluating the following limit:

limx0(1+12x21+x2)cos(x2)cosxex22.\lim_{x \to 0} \frac{\left(1 + \frac{1}{2}x^2 - \sqrt{1+x^2}\right) \cos(x^2)}{\cos x - e^{-\frac{x^2}{2}}}.

Let us solve this step by step.


Step 1: Expand 1+x2\sqrt{1 + x^2} using a Taylor series around x=0x = 0:

The expansion of 1+x2\sqrt{1+x^2} around x=0x = 0 is: 1+x21+12x218x4+O(x6).\sqrt{1 + x^2} \approx 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + O(x^6).

So, 1+12x21+x21 + \frac{1}{2}x^2 - \sqrt{1+x^2} becomes: 1+12x2(1+12x218x4)=18x4+O(x6).1 + \frac{1}{2}x^2 - \left(1 + \frac{1}{2}x^2 - \frac{1}{8}x^4\right) = -\frac{1}{8}x^4 + O(x^6).


Step 2: Expand cos(x2)\cos(x^2) around x=0x = 0:

The Taylor expansion of cos(x2)\cos(x^2) is: cos(x2)1x42+O(x8).\cos(x^2) \approx 1 - \frac{x^4}{2} + O(x^8).

Multiplying this with 18x4-\frac{1}{8}x^4, we get: (1+12x21+x2)cos(x2)=(18x4)(1x42)+O(x6)=18x4+O(x6).\left(1 + \frac{1}{2}x^2 - \sqrt{1+x^2}\right) \cos(x^2) = \left(-\frac{1}{8}x^4\right)\left(1 - \frac{x^4}{2}\right) + O(x^6) = -\frac{1}{8}x^4 + O(x^6).


Step 3: Expand the denominator cosxex22\cos x - e^{-\frac{x^2}{2}}:

The Taylor expansions of cosx\cos x and ex22e^{-\frac{x^2}{2}} around x=0x = 0 are: cosx1x22+x424,\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}, ex221x22+x48.e^{-\frac{x^2}{2}} \approx 1 - \frac{x^2}{2} + \frac{x^4}{8}.

So, the denominator becomes: cosxex22=(1x22+x424)(1x22+x48),\cos x - e^{-\frac{x^2}{2}} = \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{8}\right), cosxex22=x424x48=x412.\cos x - e^{-\frac{x^2}{2}} = \frac{x^4}{24} - \frac{x^4}{8} = -\frac{x^4}{12}.


Step 4: Combine numerator and denominator:

The numerator is: (1+12x21+x2)cos(x2)=18x4+O(x6).\left(1 + \frac{1}{2}x^2 - \sqrt{1+x^2}\right)\cos(x^2) = -\frac{1}{8}x^4 + O(x^6). The denominator is: cosxex22=112x4+O(x6).\cos x - e^{-\frac{x^2}{2}} = -\frac{1}{12}x^4 + O(x^6).

The limit becomes: limx018x4112x4=18112=128=32.\lim_{x \to 0} \frac{-\frac{1}{8}x^4}{-\frac{1}{12}x^4} = \frac{\frac{1}{8}}{\frac{1}{12}} = \frac{12}{8} = \frac{3}{2}.


Final Answer:

32\boxed{\frac{3}{2}}


Would you like additional details or clarification? Here are some related questions to explore:

  1. What is the role of Taylor series in solving limits like this one?
  2. How would the result change if the numerator or denominator were slightly modified?
  3. Why is it valid to expand functions near x=0x = 0 when finding limits?
  4. Could L’Hôpital’s rule be applied here instead of Taylor expansions?
  5. How do higher-order terms affect the accuracy of the solution?

Tip: When working with limits involving complicated expressions, always check for opportunities to simplify using series expansions or known approximations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Taylor Series
Algebraic Manipulation

Formulas

Taylor series of \( \sqrt{1 + x^2} \): \( \sqrt{1 + x^2} \approx 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + O(x^6) \)
Taylor series of \( \cos x \): \( \cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} \)
Exponential expansion \( e^{-\frac{x^2}{2}} \approx 1 - \frac{x^2}{2} + \frac{x^4}{8} \)

Theorems

Taylor Series Expansion
Limit Properties
Polynomial Approximation

Suitable Grade Level

Undergraduate (Calculus Level)