Math Problem Statement

Use l hospitals rule

Use L'Hôpital's Rule to evaluate the limit: lim (x→∞) sqrt(9x^2+1) / sqrt(4x^2+1)

Solution

The given limit is:

limx9x2+14x2+1\lim_{x \to \infty} \frac{\sqrt{9x^2+1}}{\sqrt{4x^2+1}}

Step 1: Check for Indeterminate Form

For large xx, the dominant term in both the numerator and denominator is the term with x2x^2. If we substitute xx \to \infty, we get:

9x2+14x2+19x24x2=3x2x=32\frac{\sqrt{9x^2+1}}{\sqrt{4x^2+1}} \approx \frac{\sqrt{9x^2}}{\sqrt{4x^2}} = \frac{3x}{2x} = \frac{3}{2}

Since we have a \frac{\infty}{\infty} form, we can apply L'Hôpital's Rule.

Step 2: Differentiate the Numerator and Denominator

We use the derivative of f(x)\sqrt{f(x)}, which is:

ddxf(x)=f(x)2f(x)\frac{d}{dx} \sqrt{f(x)} = \frac{f'(x)}{2\sqrt{f(x)}}

Differentiating the numerator:

ddx9x2+1=18x29x2+1=18x29x2+1=9x9x2+1\frac{d}{dx} \sqrt{9x^2+1} = \frac{18x}{2\sqrt{9x^2+1}} = \frac{18x}{2\sqrt{9x^2+1}} = \frac{9x}{\sqrt{9x^2+1}}

Differentiating the denominator:

ddx4x2+1=8x24x2+1=4x4x2+1\frac{d}{dx} \sqrt{4x^2+1} = \frac{8x}{2\sqrt{4x^2+1}} = \frac{4x}{\sqrt{4x^2+1}}

Step 3: Compute the New Limit

Now, we take the limit:

limx9x/9x2+14x/4x2+1\lim_{x \to \infty} \frac{9x/\sqrt{9x^2+1}}{4x/\sqrt{4x^2+1}}

Rewriting:

limx9x9x2+1×4x2+14x\lim_{x \to \infty} \frac{9x}{\sqrt{9x^2+1}} \times \frac{\sqrt{4x^2+1}}{4x}

For large xx:

9x9x2+19x9x2=9x3x=3\frac{9x}{\sqrt{9x^2+1}} \approx \frac{9x}{\sqrt{9x^2}} = \frac{9x}{3x} = 3

4x2+14x4x24x=2x4x=12\frac{\sqrt{4x^2+1}}{4x} \approx \frac{\sqrt{4x^2}}{4x} = \frac{2x}{4x} = \frac{1}{2}

Thus, the limit simplifies to:

3×12=323 \times \frac{1}{2} = \frac{3}{2}

Final Answer:

limx9x2+14x2+1=32\lim_{x \to \infty} \frac{\sqrt{9x^2+1}}{\sqrt{4x^2+1}} = \frac{3}{2}

Would you like a more detailed breakdown or another method?

Here are five related questions:

  1. How do we apply L'Hôpital's Rule to other indeterminate forms like 0/00/0?
  2. What are alternative methods for solving this limit, such as factoring?
  3. How does the asymptotic approximation help in limit calculations?
  4. When does L'Hôpital's Rule fail to give the correct limit?
  5. How can we use Taylor series to approximate square root functions in limits?

Tip: Before using L'Hôpital's Rule, always check if algebraic simplifications can make the problem easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
L'Hôpital's Rule
Indeterminate Forms
Asymptotic Approximation

Formulas

L'Hôpital's Rule: lim (x→∞) f(x)/g(x) = lim (x→∞) f'(x)/g'(x) if it is an indeterminate form
Derivative of sqrt(f(x)): d/dx sqrt(f(x)) = f'(x) / (2 sqrt(f(x)))
Asymptotic Approximation: sqrt(a x^2 + b) ≈ sqrt(a x^2) = |x| sqrt(a) for large x

Theorems

L'Hôpital's Rule
Asymptotic Analysis

Suitable Grade Level

College Calculus or Advanced High School Mathematics